summaryrefslogtreecommitdiff
path: root/thirdparty/embree-aarch64/kernels/builders/bvh_builder_morton.h
blob: 92be2f7e65c2ea649ee25b060d9ef49d607b664e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#pragma once

#include "../common/builder.h"
#include "../../common/algorithms/parallel_reduce.h"

namespace embree
{
  namespace isa
  {
    struct BVHBuilderMorton
    {
      static const size_t MAX_BRANCHING_FACTOR = 8;          //!< maximum supported BVH branching factor
      static const size_t MIN_LARGE_LEAF_LEVELS = 8;         //!< create balanced tree of we are that many levels before the maximum tree depth

      /*! settings for morton builder */
      struct Settings
      {
        /*! default settings */
        Settings ()
        : branchingFactor(2), maxDepth(32), minLeafSize(1), maxLeafSize(7), singleThreadThreshold(1024) {}

        /*! initialize settings from API settings */
        Settings (const RTCBuildArguments& settings)
        : branchingFactor(2), maxDepth(32), minLeafSize(1), maxLeafSize(7), singleThreadThreshold(1024)
        {
          if (RTC_BUILD_ARGUMENTS_HAS(settings,maxBranchingFactor)) branchingFactor = settings.maxBranchingFactor;
          if (RTC_BUILD_ARGUMENTS_HAS(settings,maxDepth          )) maxDepth        = settings.maxDepth;
          if (RTC_BUILD_ARGUMENTS_HAS(settings,minLeafSize       )) minLeafSize     = settings.minLeafSize;
          if (RTC_BUILD_ARGUMENTS_HAS(settings,maxLeafSize       )) maxLeafSize     = settings.maxLeafSize;

          minLeafSize = min(minLeafSize,maxLeafSize);
        }

        Settings (size_t branchingFactor, size_t maxDepth, size_t minLeafSize, size_t maxLeafSize, size_t singleThreadThreshold)
        : branchingFactor(branchingFactor), maxDepth(maxDepth), minLeafSize(minLeafSize), maxLeafSize(maxLeafSize), singleThreadThreshold(singleThreadThreshold)
        {
          minLeafSize = min(minLeafSize,maxLeafSize);
        }

      public:
        size_t branchingFactor;  //!< branching factor of BVH to build
        size_t maxDepth;         //!< maximum depth of BVH to build
        size_t minLeafSize;      //!< minimum size of a leaf
        size_t maxLeafSize;      //!< maximum size of a leaf
        size_t singleThreadThreshold; //!< threshold when we switch to single threaded build
      };

      /*! Build primitive consisting of morton code and primitive ID. */
      struct __aligned(8) BuildPrim
      {
        union {
          struct {
            unsigned int code;     //!< morton code
            unsigned int index;    //!< i'th primitive
          };
          uint64_t t;
        };

        /*! interface for radix sort */
        __forceinline operator unsigned() const { return code; }

        /*! interface for standard sort */
        __forceinline bool operator<(const BuildPrim &m) const { return code < m.code; }
      };

      /*! maps bounding box to morton code */
      struct MortonCodeMapping
      {
        static const size_t LATTICE_BITS_PER_DIM = 10;
        static const size_t LATTICE_SIZE_PER_DIM = size_t(1) << LATTICE_BITS_PER_DIM;

        vfloat4 base;
        vfloat4 scale;

        __forceinline MortonCodeMapping(const BBox3fa& bounds)
        {
          base  = (vfloat4)bounds.lower;
          const vfloat4 diag  = (vfloat4)bounds.upper - (vfloat4)bounds.lower;
          scale = select(diag > vfloat4(1E-19f), rcp(diag) * vfloat4(LATTICE_SIZE_PER_DIM * 0.99f),vfloat4(0.0f));
        }

        __forceinline const vint4 bin (const BBox3fa& box) const
        {
          const vfloat4 lower = (vfloat4)box.lower;
          const vfloat4 upper = (vfloat4)box.upper;
          const vfloat4 centroid = lower+upper;
          return vint4((centroid-base)*scale);
        }

        __forceinline unsigned int code (const BBox3fa& box) const
        {
          const vint4 binID = bin(box);
          const unsigned int x = extract<0>(binID);
          const unsigned int y = extract<1>(binID);
          const unsigned int z = extract<2>(binID);
          const unsigned int xyz = bitInterleave(x,y,z);
          return xyz;
        }
      };

#if defined (__AVX2__)

      /*! for AVX2 there is a fast scalar bitInterleave */
      struct MortonCodeGenerator
      {
        __forceinline MortonCodeGenerator(const MortonCodeMapping& mapping, BuildPrim* dest)
          : mapping(mapping), dest(dest) {}

        __forceinline void operator() (const BBox3fa& b, const unsigned index)
        {
          dest->index = index;
          dest->code = mapping.code(b);
          dest++;
        }

      public:
        const MortonCodeMapping mapping;
        BuildPrim* dest;
        size_t currentID;
      };

#else

      /*! before AVX2 is it better to use the SSE version of bitInterleave */
      struct MortonCodeGenerator
      {
        __forceinline MortonCodeGenerator(const MortonCodeMapping& mapping, BuildPrim* dest)
          : mapping(mapping), dest(dest), currentID(0), slots(0), ax(0), ay(0), az(0), ai(0) {}

        __forceinline ~MortonCodeGenerator()
        {
          if (slots != 0)
          {
            const vint4 code = bitInterleave(ax,ay,az);
            for (size_t i=0; i<slots; i++) {
              dest[currentID-slots+i].index = ai[i];
              dest[currentID-slots+i].code = code[i];
            }
          }
        }

        __forceinline void operator() (const BBox3fa& b, const unsigned index)
        {
          const vint4 binID = mapping.bin(b);
          ax[slots] = extract<0>(binID);
          ay[slots] = extract<1>(binID);
          az[slots] = extract<2>(binID);
          ai[slots] = index;
          slots++;
          currentID++;

          if (slots == 4)
          {
            const vint4 code = bitInterleave(ax,ay,az);
            vint4::storeu(&dest[currentID-4],unpacklo(code,ai));
            vint4::storeu(&dest[currentID-2],unpackhi(code,ai));
            slots = 0;
          }
        }

      public:
        const MortonCodeMapping mapping;
        BuildPrim* dest;
        size_t currentID;
        size_t slots;
        vint4 ax, ay, az, ai;
      };

#endif

      template<
        typename ReductionTy,
        typename Allocator,
        typename CreateAllocator,
        typename CreateNodeFunc,
        typename SetNodeBoundsFunc,
        typename CreateLeafFunc,
        typename CalculateBounds,
        typename ProgressMonitor>

        class BuilderT : private Settings
      {
        ALIGNED_CLASS_(16);

      public:

        BuilderT (CreateAllocator& createAllocator,
                  CreateNodeFunc& createNode,
                  SetNodeBoundsFunc& setBounds,
                  CreateLeafFunc& createLeaf,
                  CalculateBounds& calculateBounds,
                  ProgressMonitor& progressMonitor,
                  const Settings& settings)

          : Settings(settings),
          createAllocator(createAllocator),
          createNode(createNode),
          setBounds(setBounds),
          createLeaf(createLeaf),
          calculateBounds(calculateBounds),
          progressMonitor(progressMonitor),
          morton(nullptr) {}

        ReductionTy createLargeLeaf(size_t depth, const range<unsigned>& current, Allocator alloc)
        {
          /* this should never occur but is a fatal error */
          if (depth > maxDepth)
            throw_RTCError(RTC_ERROR_UNKNOWN,"depth limit reached");

          /* create leaf for few primitives */
          if (current.size() <= maxLeafSize)
            return createLeaf(current,alloc);

          /* fill all children by always splitting the largest one */
          range<unsigned> children[MAX_BRANCHING_FACTOR];
          size_t numChildren = 1;
          children[0] = current;

          do {

            /* find best child with largest number of primitives */
            size_t bestChild = -1;
            size_t bestSize = 0;
            for (size_t i=0; i<numChildren; i++)
            {
              /* ignore leaves as they cannot get split */
              if (children[i].size() <= maxLeafSize)
                continue;

              /* remember child with largest size */
              if (children[i].size() > bestSize) {
                bestSize = children[i].size();
                bestChild = i;
              }
            }
            if (bestChild == size_t(-1)) break;

            /*! split best child into left and right child */
            auto split = children[bestChild].split();

            /* add new children left and right */
            children[bestChild] = children[numChildren-1];
            children[numChildren-1] = split.first;
            children[numChildren+0] = split.second;
            numChildren++;

          } while (numChildren < branchingFactor);

          /* create node */
          auto node = createNode(alloc,numChildren);

          /* recurse into each child */
          ReductionTy bounds[MAX_BRANCHING_FACTOR];
          for (size_t i=0; i<numChildren; i++)
            bounds[i] = createLargeLeaf(depth+1,children[i],alloc);

          return setBounds(node,bounds,numChildren);
        }

        /*! recreates morton codes when reaching a region where all codes are identical */
        __noinline void recreateMortonCodes(const range<unsigned>& current) const
        {
          /* fast path for small ranges */
          if (likely(current.size() < 1024))
          {
            /*! recalculate centroid bounds */
            BBox3fa centBounds(empty);
            for (size_t i=current.begin(); i<current.end(); i++)
              centBounds.extend(center2(calculateBounds(morton[i])));

            /* recalculate morton codes */
            MortonCodeMapping mapping(centBounds);
            for (size_t i=current.begin(); i<current.end(); i++)
              morton[i].code = mapping.code(calculateBounds(morton[i]));

            /* sort morton codes */
            std::sort(morton+current.begin(),morton+current.end());
          }
          else
          {
            /*! recalculate centroid bounds */
            auto calculateCentBounds = [&] ( const range<unsigned>& r ) {
              BBox3fa centBounds = empty;
              for (size_t i=r.begin(); i<r.end(); i++)
                centBounds.extend(center2(calculateBounds(morton[i])));
              return centBounds;
            };
            const BBox3fa centBounds = parallel_reduce(current.begin(), current.end(), unsigned(1024),
                                                       BBox3fa(empty), calculateCentBounds, BBox3fa::merge);

            /* recalculate morton codes */
            MortonCodeMapping mapping(centBounds);
            parallel_for(current.begin(), current.end(), unsigned(1024), [&] ( const range<unsigned>& r ) {
                for (size_t i=r.begin(); i<r.end(); i++) {
                  morton[i].code = mapping.code(calculateBounds(morton[i]));
                }
              });

            /*! sort morton codes */
#if defined(TASKING_TBB)
            tbb::parallel_sort(morton+current.begin(),morton+current.end());
#else
            radixsort32(morton+current.begin(),current.size());
#endif
          }
        }

        __forceinline void split(const range<unsigned>& current, range<unsigned>& left, range<unsigned>& right) const
        {
          const unsigned int code_start = morton[current.begin()].code;
          const unsigned int code_end   = morton[current.end()-1].code;
          unsigned int bitpos = lzcnt(code_start^code_end);

          /* if all items mapped to same morton code, then re-create new morton codes for the items */
          if (unlikely(bitpos == 32))
          {
            recreateMortonCodes(current);
            const unsigned int code_start = morton[current.begin()].code;
            const unsigned int code_end   = morton[current.end()-1].code;
            bitpos = lzcnt(code_start^code_end);

            /* if the morton code is still the same, goto fall back split */
            if (unlikely(bitpos == 32)) {
              current.split(left,right);
              return;
            }
          }

          /* split the items at the topmost different morton code bit */
          const unsigned int bitpos_diff = 31-bitpos;
          const unsigned int bitmask = 1 << bitpos_diff;

          /* find location where bit differs using binary search */
          unsigned begin = current.begin();
          unsigned end   = current.end();
          while (begin + 1 != end) {
            const unsigned mid = (begin+end)/2;
            const unsigned bit = morton[mid].code & bitmask;
            if (bit == 0) begin = mid; else end = mid;
          }
          unsigned center = end;
#if defined(DEBUG)
          for (unsigned int i=begin;  i<center; i++) assert((morton[i].code & bitmask) == 0);
          for (unsigned int i=center; i<end;    i++) assert((morton[i].code & bitmask) == bitmask);
#endif

          left = make_range(current.begin(),center);
          right = make_range(center,current.end());
        }

        ReductionTy recurse(size_t depth, const range<unsigned>& current, Allocator alloc, bool toplevel)
        {
          /* get thread local allocator */
          if (!alloc)
            alloc = createAllocator();

          /* call memory monitor function to signal progress */
          if (toplevel && current.size() <= singleThreadThreshold)
            progressMonitor(current.size());

          /* create leaf node */
          if (unlikely(depth+MIN_LARGE_LEAF_LEVELS >= maxDepth || current.size() <= minLeafSize))
            return createLargeLeaf(depth,current,alloc);

          /* fill all children by always splitting the one with the largest surface area */
          range<unsigned> children[MAX_BRANCHING_FACTOR];
          split(current,children[0],children[1]);
          size_t numChildren = 2;

          while (numChildren < branchingFactor)
          {
            /* find best child with largest number of primitives */
            int bestChild = -1;
            unsigned bestItems = 0;
            for (unsigned int i=0; i<numChildren; i++)
            {
              /* ignore leaves as they cannot get split */
              if (children[i].size() <= minLeafSize)
                continue;

              /* remember child with largest area */
              if (children[i].size() > bestItems) {
                bestItems = children[i].size();
                bestChild = i;
              }
            }
            if (bestChild == -1) break;

            /*! split best child into left and right child */
            range<unsigned> left, right;
            split(children[bestChild],left,right);

            /* add new children left and right */
            children[bestChild] = children[numChildren-1];
            children[numChildren-1] = left;
            children[numChildren+0] = right;
            numChildren++;
          }

          /* create leaf node if no split is possible */
          if (unlikely(numChildren == 1))
            return createLeaf(current,alloc);

          /* allocate node */
          auto node = createNode(alloc,numChildren);

          /* process top parts of tree parallel */
          ReductionTy bounds[MAX_BRANCHING_FACTOR];
          if (current.size() > singleThreadThreshold)
          {
            /*! parallel_for is faster than spawing sub-tasks */
            parallel_for(size_t(0), numChildren, [&] (const range<size_t>& r) {
                for (size_t i=r.begin(); i<r.end(); i++) {
                  bounds[i] = recurse(depth+1,children[i],nullptr,true);
                  _mm_mfence(); // to allow non-temporal stores during build
                }
              });
          }

          /* finish tree sequentially */
          else
          {
            for (size_t i=0; i<numChildren; i++)
              bounds[i] = recurse(depth+1,children[i],alloc,false);
          }

          return setBounds(node,bounds,numChildren);
        }

        /* build function */
        ReductionTy build(BuildPrim* src, BuildPrim* tmp, size_t numPrimitives)
        {
          /* sort morton codes */
          morton = src;
          radix_sort_u32(src,tmp,numPrimitives,singleThreadThreshold);

          /* build BVH */
          const ReductionTy root = recurse(1, range<unsigned>(0,(unsigned)numPrimitives), nullptr, true);
          _mm_mfence(); // to allow non-temporal stores during build
          return root;
        }

      public:
        CreateAllocator& createAllocator;
        CreateNodeFunc& createNode;
        SetNodeBoundsFunc& setBounds;
        CreateLeafFunc& createLeaf;
        CalculateBounds& calculateBounds;
        ProgressMonitor& progressMonitor;

      public:
        BuildPrim* morton;
      };


      template<
      typename ReductionTy,
        typename CreateAllocFunc,
        typename CreateNodeFunc,
        typename SetBoundsFunc,
        typename CreateLeafFunc,
        typename CalculateBoundsFunc,
        typename ProgressMonitor>

        static ReductionTy build(CreateAllocFunc createAllocator,
                                 CreateNodeFunc createNode,
                                 SetBoundsFunc setBounds,
                                 CreateLeafFunc createLeaf,
                                 CalculateBoundsFunc calculateBounds,
                                 ProgressMonitor progressMonitor,
                                 BuildPrim* src,
                                 BuildPrim* tmp,
                                 size_t numPrimitives,
                                 const Settings& settings)
        {
          typedef BuilderT<
            ReductionTy,
            decltype(createAllocator()),
            CreateAllocFunc,
            CreateNodeFunc,
            SetBoundsFunc,
            CreateLeafFunc,
            CalculateBoundsFunc,
            ProgressMonitor> Builder;

          Builder builder(createAllocator,
                          createNode,
                          setBounds,
                          createLeaf,
                          calculateBounds,
                          progressMonitor,
                          settings);

          return builder.build(src,tmp,numPrimitives);
        }
    };
  }
}