1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "alloc.h"
#include <algorithm>
namespace embree
{
template<typename T, typename allocator>
class vector_t
{
public:
typedef T value_type;
typedef T* iterator;
typedef const T* const_iterator;
__forceinline vector_t ()
: size_active(0), size_alloced(0), items(nullptr) {}
__forceinline explicit vector_t (size_t sz)
: size_active(0), size_alloced(0), items(nullptr) { internal_resize_init(sz); }
template<typename M>
__forceinline explicit vector_t (M alloc, size_t sz)
: alloc(alloc), size_active(0), size_alloced(0), items(nullptr) { internal_resize_init(sz); }
__forceinline ~vector_t() {
clear();
}
__forceinline vector_t (const vector_t& other)
{
size_active = other.size_active;
size_alloced = other.size_alloced;
items = alloc.allocate(size_alloced);
for (size_t i=0; i<size_active; i++)
::new (&items[i]) value_type(other.items[i]);
}
__forceinline vector_t (vector_t&& other)
: alloc(std::move(other.alloc))
{
size_active = other.size_active; other.size_active = 0;
size_alloced = other.size_alloced; other.size_alloced = 0;
items = other.items; other.items = nullptr;
}
__forceinline vector_t& operator=(const vector_t& other)
{
resize(other.size_active);
for (size_t i=0; i<size_active; i++)
items[i] = value_type(other.items[i]);
return *this;
}
__forceinline vector_t& operator=(vector_t&& other)
{
clear();
alloc = std::move(other.alloc);
size_active = other.size_active; other.size_active = 0;
size_alloced = other.size_alloced; other.size_alloced = 0;
items = other.items; other.items = nullptr;
return *this;
}
/********************** Iterators ****************************/
__forceinline iterator begin() { return items; };
__forceinline const_iterator begin() const { return items; };
__forceinline iterator end () { return items+size_active; };
__forceinline const_iterator end () const { return items+size_active; };
/********************** Capacity ****************************/
__forceinline bool empty () const { return size_active == 0; }
__forceinline size_t size () const { return size_active; }
__forceinline size_t capacity () const { return size_alloced; }
__forceinline void resize(size_t new_size) {
internal_resize(new_size,internal_grow_size(new_size));
}
__forceinline void reserve(size_t new_alloced)
{
/* do nothing if container already large enough */
if (new_alloced <= size_alloced)
return;
/* resize exact otherwise */
internal_resize(size_active,new_alloced);
}
__forceinline void shrink_to_fit() {
internal_resize(size_active,size_active);
}
/******************** Element access **************************/
__forceinline T& operator[](size_t i) { assert(i < size_active); return items[i]; }
__forceinline const T& operator[](size_t i) const { assert(i < size_active); return items[i]; }
__forceinline T& at(size_t i) { assert(i < size_active); return items[i]; }
__forceinline const T& at(size_t i) const { assert(i < size_active); return items[i]; }
__forceinline T& front() const { assert(size_active > 0); return items[0]; };
__forceinline T& back () const { assert(size_active > 0); return items[size_active-1]; };
__forceinline T* data() { return items; };
__forceinline const T* data() const { return items; };
/******************** Modifiers **************************/
__forceinline void push_back(const T& nt)
{
const T v = nt; // need local copy as input reference could point to this vector
internal_resize(size_active,internal_grow_size(size_active+1));
::new (&items[size_active++]) T(v);
}
__forceinline void pop_back()
{
assert(!empty());
size_active--;
alloc.destroy(&items[size_active]);
}
__forceinline void clear()
{
/* destroy elements */
for (size_t i=0; i<size_active; i++)
alloc.destroy(&items[i]);
/* free memory */
alloc.deallocate(items,size_alloced);
items = nullptr;
size_active = size_alloced = 0;
}
/******************** Comparisons **************************/
friend bool operator== (const vector_t& a, const vector_t& b)
{
if (a.size() != b.size()) return false;
for (size_t i=0; i<a.size(); i++)
if (a[i] != b[i])
return false;
return true;
}
friend bool operator!= (const vector_t& a, const vector_t& b) {
return !(a==b);
}
private:
__forceinline void internal_resize_init(size_t new_active)
{
assert(size_active == 0);
assert(size_alloced == 0);
assert(items == nullptr);
if (new_active == 0) return;
items = alloc.allocate(new_active);
for (size_t i=0; i<new_active; i++) ::new (&items[i]) T();
size_active = new_active;
size_alloced = new_active;
}
__forceinline void internal_resize(size_t new_active, size_t new_alloced)
{
assert(new_active <= new_alloced);
/* destroy elements */
if (new_active < size_active)
{
for (size_t i=new_active; i<size_active; i++)
alloc.destroy(&items[i]);
size_active = new_active;
}
/* only reallocate if necessary */
if (new_alloced == size_alloced) {
for (size_t i=size_active; i<new_active; i++) ::new (&items[i]) T;
size_active = new_active;
return;
}
/* reallocate and copy items */
T* old_items = items;
items = alloc.allocate(new_alloced);
for (size_t i=0; i<size_active; i++) {
::new (&items[i]) T(std::move(old_items[i]));
alloc.destroy(&old_items[i]);
}
for (size_t i=size_active; i<new_active; i++) {
::new (&items[i]) T;
}
alloc.deallocate(old_items,size_alloced);
size_active = new_active;
size_alloced = new_alloced;
}
__forceinline size_t internal_grow_size(size_t new_alloced)
{
/* do nothing if container already large enough */
if (new_alloced <= size_alloced)
return size_alloced;
/* resize to next power of 2 otherwise */
size_t new_size_alloced = size_alloced;
while (new_size_alloced < new_alloced) {
new_size_alloced = std::max(size_t(1),2*new_size_alloced);
}
return new_size_alloced;
}
private:
allocator alloc;
size_t size_active; // number of valid items
size_t size_alloced; // number of items allocated
T* items; // data array
};
/*! vector class that performs standard allocations */
template<typename T>
using vector = vector_t<T,std::allocator<T>>;
/*! vector class that performs aligned allocations */
template<typename T>
using avector = vector_t<T,aligned_allocator<T,std::alignment_of<T>::value> >;
/*! vector class that performs OS allocations */
template<typename T>
using ovector = vector_t<T,os_allocator<T> >;
}
|