summaryrefslogtreecommitdiff
path: root/thirdparty/embree-aarch64/common/math/lbbox.h
blob: 95df4a918d7b4e778fa637e6e08d67b8023d9e54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#pragma once

#include "bbox.h"
#include "range.h"

namespace embree
{
  template<typename T>
    __forceinline std::pair<T,T> globalLinear(const std::pair<T,T>& v, const BBox1f& dt)
  {
    const float rcp_dt_size = float(1.0f)/dt.size();
    const T g0 = lerp(v.first,v.second,-dt.lower*rcp_dt_size);
    const T g1 = lerp(v.first,v.second,(1.0f-dt.lower)*rcp_dt_size);
    return std::make_pair(g0,g1);
  }

  template<typename T>
  struct LBBox
  {
  public:
    __forceinline LBBox () {}

    template<typename T1>
    __forceinline LBBox ( const LBBox<T1>& other )
    : bounds0(other.bounds0), bounds1(other.bounds1) {} 

    __forceinline LBBox& operator= ( const LBBox& other ) { 
      bounds0 = other.bounds0; bounds1 = other.bounds1; return *this; 
    }

    __forceinline LBBox (EmptyTy) 
      : bounds0(EmptyTy()), bounds1(EmptyTy()) {}
    
    __forceinline explicit LBBox ( const BBox<T>& bounds) 
      : bounds0(bounds), bounds1(bounds) { }
    
    __forceinline LBBox ( const BBox<T>& bounds0, const BBox<T>& bounds1) 
      : bounds0(bounds0), bounds1(bounds1) { }

    LBBox ( const avector<BBox<T>>& bounds ) 
    {
      assert(bounds.size());
      BBox<T> b0 = bounds.front();
      BBox<T> b1 = bounds.back();
      for (size_t i=1; i<bounds.size()-1; i++) {
        const float f = float(i)/float(bounds.size()-1);
        const BBox<T> bt = lerp(b0,b1,f);
        const T dlower = min(bounds[i].lower-bt.lower,T(zero));
        const T dupper = max(bounds[i].upper-bt.upper,T(zero));
        b0.lower += dlower; b1.lower += dlower;
        b0.upper += dupper; b1.upper += dupper;
      }
      bounds0 = b0;
      bounds1 = b1;
    }

    /*! calculates the linear bounds of a primitive for the specified time range */
    template<typename BoundsFunc>
    __forceinline LBBox(const BoundsFunc& bounds, const BBox1f& time_range, float numTimeSegments)
    {
      const float lower = time_range.lower*numTimeSegments;
      const float upper = time_range.upper*numTimeSegments;
      const float ilowerf = floor(lower);
      const float iupperf = ceil(upper);
      const int ilower = (int)ilowerf;
      const int iupper = (int)iupperf;

      const BBox<T> blower0 = bounds(ilower);
      const BBox<T> bupper1 = bounds(iupper);

      if (iupper-ilower == 1) {
        bounds0 = lerp(blower0, bupper1, lower-ilowerf);
        bounds1 = lerp(bupper1, blower0, iupperf-upper);
        return;
      }

      const BBox<T> blower1 = bounds(ilower+1);
      const BBox<T> bupper0 = bounds(iupper-1);
      BBox<T> b0 = lerp(blower0, blower1, lower-ilowerf);
      BBox<T> b1 = lerp(bupper1, bupper0, iupperf-upper);

      for (int i = ilower+1; i < iupper; i++)
      {
        const float f = (float(i)/numTimeSegments - time_range.lower) / time_range.size();
        const BBox<T> bt = lerp(b0, b1, f);
        const BBox<T> bi = bounds(i);
        const T dlower = min(bi.lower-bt.lower, T(zero));
        const T dupper = max(bi.upper-bt.upper, T(zero));
        b0.lower += dlower; b1.lower += dlower;
        b0.upper += dupper; b1.upper += dupper;
      }

      bounds0 = b0;
      bounds1 = b1;
    }

    /*! calculates the linear bounds of a primitive for the specified time range */
    template<typename BoundsFunc>
    __forceinline LBBox(const BoundsFunc& bounds, const BBox1f& time_range_in, const BBox1f& geom_time_range, float geom_time_segments)
    {
      /* normalize global time_range_in to local geom_time_range */
      const BBox1f time_range((time_range_in.lower-geom_time_range.lower)/geom_time_range.size(),
                              (time_range_in.upper-geom_time_range.lower)/geom_time_range.size());
        
      const float lower = time_range.lower*geom_time_segments;
      const float upper = time_range.upper*geom_time_segments;
      const float ilowerf = floor(lower);
      const float iupperf = ceil(upper);
      const float ilowerfc = max(0.0f,ilowerf);
      const float iupperfc = min(iupperf,geom_time_segments);
      const int   ilowerc = (int)ilowerfc;
      const int   iupperc = (int)iupperfc;
      assert(iupperc-ilowerc > 0);

      /* this larger iteration range guarantees that we process borders of geom_time_range is (partially) inside time_range_in */
      const int ilower_iter = max(-1,(int)ilowerf);
      const int iupper_iter = min((int)iupperf,(int)geom_time_segments+1);
        
      const BBox<T> blower0 = bounds(ilowerc);
      const BBox<T> bupper1 = bounds(iupperc);
      if (iupper_iter-ilower_iter == 1) {
        bounds0 = lerp(blower0, bupper1, max(0.0f,lower-ilowerfc));
        bounds1 = lerp(bupper1, blower0, max(0.0f,iupperfc-upper));
        return;
      }

      const BBox<T> blower1 = bounds(ilowerc+1);
      const BBox<T> bupper0 = bounds(iupperc-1);
      BBox<T> b0 = lerp(blower0, blower1, max(0.0f,lower-ilowerfc));
      BBox<T> b1 = lerp(bupper1, bupper0, max(0.0f,iupperfc-upper));

      for (int i = ilower_iter+1; i < iupper_iter; i++)
      {
        const float f = (float(i)/geom_time_segments - time_range.lower) / time_range.size();
        const BBox<T> bt = lerp(b0, b1, f);
        const BBox<T> bi = bounds(i);
        const T dlower = min(bi.lower-bt.lower, T(zero));
        const T dupper = max(bi.upper-bt.upper, T(zero));
        b0.lower += dlower; b1.lower += dlower;
        b0.upper += dupper; b1.upper += dupper;
      }

      bounds0 = b0;
      bounds1 = b1;
    }

    /*! calculates the linear bounds of a primitive for the specified time range */
    template<typename BoundsFunc>
    __forceinline LBBox(const BoundsFunc& bounds, const range<int>& time_range, int numTimeSegments)
    {
      const int ilower = time_range.begin();
      const int iupper = time_range.end();

      BBox<T> b0 = bounds(ilower);
      BBox<T> b1 = bounds(iupper);

      if (iupper-ilower == 1)
      {
        bounds0 = b0;
        bounds1 = b1;
        return;
      }
  
      for (int i = ilower+1; i<iupper; i++)
      {
        const float f = float(i - time_range.begin()) / float(time_range.size());
        const BBox<T> bt = lerp(b0, b1, f);
        const BBox<T> bi = bounds(i);
        const T dlower = min(bi.lower-bt.lower, T(zero));
        const T dupper = max(bi.upper-bt.upper, T(zero));
        b0.lower += dlower; b1.lower += dlower;
        b0.upper += dupper; b1.upper += dupper;
      }

      bounds0 = b0;
      bounds1 = b1;
    }

  public:

    __forceinline bool empty() const {
      return bounds().empty();
    }

    __forceinline BBox<T> bounds () const {
      return merge(bounds0,bounds1);
    }

    __forceinline BBox<T> interpolate( const float t ) const {
      return lerp(bounds0,bounds1,t);
    }

    __forceinline LBBox<T> interpolate( const BBox1f& dt ) const {
      return LBBox<T>(interpolate(dt.lower),interpolate(dt.upper));
    }

    __forceinline void extend( const LBBox& other ) {
      bounds0.extend(other.bounds0);
      bounds1.extend(other.bounds1);
    }

    __forceinline float expectedHalfArea() const;

    __forceinline float expectedHalfArea(const BBox1f& dt) const {
      return interpolate(dt).expectedHalfArea();
    }

    __forceinline float expectedApproxHalfArea() const {
      return 0.5f*(halfArea(bounds0) + halfArea(bounds1));
    }

    /* calculates bounds for [0,1] time range from bounds in dt time range */
    __forceinline LBBox global(const BBox1f& dt) const 
    {
      const float rcp_dt_size = 1.0f/dt.size();
      const BBox<T> b0 = interpolate(-dt.lower*rcp_dt_size);
      const BBox<T> b1 = interpolate((1.0f-dt.lower)*rcp_dt_size);
      return LBBox(b0,b1);
    }

    /*! Comparison Operators */
    //template<typename TT> friend __forceinline bool operator==( const LBBox<TT>& a, const LBBox<TT>& b ) { return a.bounds0 == b.bounds0 && a.bounds1 == b.bounds1; }
    //template<typename TT> friend __forceinline bool operator!=( const LBBox<TT>& a, const LBBox<TT>& b ) { return a.bounds0 != b.bounds0 || a.bounds1 != b.bounds1; }
    friend __forceinline bool operator==( const LBBox& a, const LBBox& b ) { return a.bounds0 == b.bounds0 && a.bounds1 == b.bounds1; }
    friend __forceinline bool operator!=( const LBBox& a, const LBBox& b ) { return a.bounds0 != b.bounds0 || a.bounds1 != b.bounds1; }
    
    /*! output operator */
    friend __forceinline embree_ostream operator<<(embree_ostream cout, const LBBox& box) {
      return cout << "LBBox { " << box.bounds0 << "; " << box.bounds1 << " }";
    }

  public:
    BBox<T> bounds0, bounds1;
  };

  /*! tests if box is finite */
  template<typename T>
    __forceinline bool isvalid( const LBBox<T>& v ) {
    return isvalid(v.bounds0) && isvalid(v.bounds1);
  }

  template<typename T>
    __forceinline bool isvalid_non_empty( const LBBox<T>& v ) {
    return isvalid_non_empty(v.bounds0) && isvalid_non_empty(v.bounds1);
  }
  
  template<typename T>
    __forceinline T expectedArea(const T& a0, const T& a1, const T& b0, const T& b1)
  {
    const T da = a1-a0;
    const T db = b1-b0;
    return a0*b0+(a0*db+da*b0)*T(0.5f) + da*db*T(1.0f/3.0f);
  }
  
  template<> __forceinline float LBBox<Vec3fa>::expectedHalfArea() const 
  {
    const Vec3fa d0 = bounds0.size();
    const Vec3fa d1 = bounds1.size();
    return reduce_add(expectedArea(Vec3fa(d0.x,d0.y,d0.z),
                                   Vec3fa(d1.x,d1.y,d1.z),
                                   Vec3fa(d0.y,d0.z,d0.x),
                                   Vec3fa(d1.y,d1.z,d1.x)));
  }

  template<typename T>
  __forceinline float expectedApproxHalfArea(const LBBox<T>& box) {
    return box.expectedApproxHalfArea(); 
  }

  template<typename T>
  __forceinline LBBox<T> merge(const LBBox<T>& a, const LBBox<T>& b) {
    return LBBox<T>(merge(a.bounds0, b.bounds0), merge(a.bounds1, b.bounds1));
  }

   /*! subset relation */
  template<typename T> __inline bool subset( const LBBox<T>& a, const LBBox<T>& b ) {
    return subset(a.bounds0,b.bounds0) && subset(a.bounds1,b.bounds1);
  }

  /*! default template instantiations */
  typedef LBBox<float> LBBox1f;
  typedef LBBox<Vec2f> LBBox2f;
  typedef LBBox<Vec3f> LBBox3f;
  typedef LBBox<Vec3fa> LBBox3fa;
  typedef LBBox<Vec3fx> LBBox3fx;
}