summaryrefslogtreecommitdiff
path: root/thirdparty/cvtt/ConvectionKernels_EndpointRefiner.h
blob: c1276553b2a5c72c89380912f08ed3258cb81f94 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#pragma once
#ifndef __CVTT_ENDPOINTREFINER_H__
#define __CVTT_ENDPOINTREFINER_H__

#include "ConvectionKernels_ParallelMath.h"

namespace cvtt
{
    namespace Internal
    {
        // Solve for a, b where v = a*t + b
        // This allows endpoints to be mapped to where T=0 and T=1
        // Least squares from totals:
        // a = (tv - t*v/w)/(tt - t*t/w)
        // b = (v - a*t)/w
        template<int TVectorSize>
        class EndpointRefiner
        {
        public:
            typedef ParallelMath::Float MFloat;
            typedef ParallelMath::UInt16 MUInt16;
            typedef ParallelMath::UInt15 MUInt15;
            typedef ParallelMath::AInt16 MAInt16;
            typedef ParallelMath::SInt16 MSInt16;
            typedef ParallelMath::SInt32 MSInt32;

            MFloat m_tv[TVectorSize];
            MFloat m_v[TVectorSize];
            MFloat m_tt;
            MFloat m_t;
            MFloat m_w;
            int m_wu;

            float m_rcpMaxIndex;
            float m_channelWeights[TVectorSize];
            float m_rcpChannelWeights[TVectorSize];

            void Init(int indexRange, const float channelWeights[TVectorSize])
            {
                for (int ch = 0; ch < TVectorSize; ch++)
                {
                    m_tv[ch] = ParallelMath::MakeFloatZero();
                    m_v[ch] = ParallelMath::MakeFloatZero();
                }
                m_tt = ParallelMath::MakeFloatZero();
                m_t = ParallelMath::MakeFloatZero();
                m_w = ParallelMath::MakeFloatZero();

                m_rcpMaxIndex = 1.0f / static_cast<float>(indexRange - 1);

                for (int ch = 0; ch < TVectorSize; ch++)
                {
                    m_channelWeights[ch] = channelWeights[ch];
                    m_rcpChannelWeights[ch] = 1.0f;
                    if (m_channelWeights[ch] != 0.0f)
                        m_rcpChannelWeights[ch] = 1.0f / channelWeights[ch];
                }

                m_wu = 0;
            }

            void ContributePW(const MFloat *pwFloatPixel, const MUInt15 &index, const MFloat &weight)
            {
                MFloat t = ParallelMath::ToFloat(index) * m_rcpMaxIndex;

                for (int ch = 0; ch < TVectorSize; ch++)
                {
                    MFloat v = pwFloatPixel[ch] * weight;

                    m_tv[ch] = m_tv[ch] + t * v;
                    m_v[ch] = m_v[ch] + v;
                }
                m_tt = m_tt + weight * t * t;
                m_t = m_t + weight * t;
                m_w = m_w + weight;
            }

            void ContributeUnweightedPW(const MFloat *pwFloatPixel, const MUInt15 &index, int numRealChannels)
            {
                MFloat t = ParallelMath::ToFloat(index) * m_rcpMaxIndex;

                for (int ch = 0; ch < numRealChannels; ch++)
                {
                    MFloat v = pwFloatPixel[ch];

                    m_tv[ch] = m_tv[ch] + t * v;
                    m_v[ch] = m_v[ch] + v;
                }
                m_tt = m_tt + t * t;
                m_t = m_t + t;
                m_wu++;
            }

            void ContributeUnweightedPW(const MFloat *floatPixel, const MUInt15 &index)
            {
                ContributeUnweightedPW(floatPixel, index, TVectorSize);
            }

            void GetRefinedEndpoints(MFloat endPoint[2][TVectorSize])
            {
                // a = (tv - t*v/w)/(tt - t*t/w)
                // b = (v - a*t)/w
                MFloat w = m_w + ParallelMath::MakeFloat(static_cast<float>(m_wu));

                ParallelMath::MakeSafeDenominator(w);
                MFloat wRcp = ParallelMath::Reciprocal(w);

                MFloat adenom = (m_tt * w - m_t * m_t) * wRcp;

                ParallelMath::FloatCompFlag adenomZero = ParallelMath::Equal(adenom, ParallelMath::MakeFloatZero());
                ParallelMath::ConditionalSet(adenom, adenomZero, ParallelMath::MakeFloat(1.0f));

                for (int ch = 0; ch < TVectorSize; ch++)
                {
                    /*
                    if (adenom == 0.0)
                    p1 = p2 = er.v / er.w;
                    else
                    {
                    float4 a = (er.tv - er.t*er.v / er.w) / adenom;
                    float4 b = (er.v - a * er.t) / er.w;
                    p1 = b;
                    p2 = a + b;
                    }
                    */

                    MFloat a = (m_tv[ch] - m_t * m_v[ch] * wRcp) / adenom;
                    MFloat b = (m_v[ch] - a * m_t) * wRcp;

                    MFloat p1 = b;
                    MFloat p2 = a + b;

                    ParallelMath::ConditionalSet(p1, adenomZero, (m_v[ch] * wRcp));
                    ParallelMath::ConditionalSet(p2, adenomZero, p1);

                    // Unweight
                    float inverseWeight = m_rcpChannelWeights[ch];

                    endPoint[0][ch] = p1 * inverseWeight;
                    endPoint[1][ch] = p2 * inverseWeight;
                }
            }

            void GetRefinedEndpointsLDR(MUInt15 endPoint[2][TVectorSize], int numRealChannels, const ParallelMath::RoundTowardNearestForScope *roundingMode)
            {
                MFloat floatEndPoint[2][TVectorSize];
                GetRefinedEndpoints(floatEndPoint);

                for (int epi = 0; epi < 2; epi++)
                    for (int ch = 0; ch < TVectorSize; ch++)
                        endPoint[epi][ch] = ParallelMath::RoundAndConvertToU15(ParallelMath::Clamp(floatEndPoint[epi][ch], 0.0f, 255.0f), roundingMode);
            }

            void GetRefinedEndpointsLDR(MUInt15 endPoint[2][TVectorSize], const ParallelMath::RoundTowardNearestForScope *roundingMode)
            {
                GetRefinedEndpointsLDR(endPoint, TVectorSize, roundingMode);
            }

            void GetRefinedEndpointsHDR(MSInt16 endPoint[2][TVectorSize], bool isSigned, const ParallelMath::RoundTowardNearestForScope *roundingMode)
            {
                MFloat floatEndPoint[2][TVectorSize];
                GetRefinedEndpoints(floatEndPoint);

                for (int epi = 0; epi < 2; epi++)
                {
                    for (int ch = 0; ch < TVectorSize; ch++)
                    {
                        MFloat f = floatEndPoint[epi][ch];
                        if (isSigned)
                            endPoint[epi][ch] = ParallelMath::LosslessCast<MSInt16>::Cast(ParallelMath::RoundAndConvertToS16(ParallelMath::Clamp(f, -31743.0f, 31743.0f), roundingMode));
                        else
                            endPoint[epi][ch] = ParallelMath::LosslessCast<MSInt16>::Cast(ParallelMath::RoundAndConvertToU15(ParallelMath::Clamp(f, 0.0f, 31743.0f), roundingMode));
                    }
                }
            }
        };
    }
}

#endif