summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/src/LinearMath/btSpatialAlgebra.h
blob: 8e59658bca76c9eff78ef4f2040392f59b3d0ef4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
/*
Copyright (c) 2003-2015 Erwin Coumans, Jakub Stepien

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

///These spatial algebra classes are used for btMultiBody, 
///see BulletDynamics/Featherstone

#ifndef BT_SPATIAL_ALGEBRA_H
#define BT_SPATIAL_ALGEBRA_H


#include "btMatrix3x3.h"

struct btSpatialForceVector
{	
	btVector3 m_topVec, m_bottomVec;	
	//
	btSpatialForceVector() { setZero(); }
	btSpatialForceVector(const btVector3 &angular, const btVector3 &linear) : m_topVec(linear), m_bottomVec(angular) {}
	btSpatialForceVector(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
	{
		setValue(ax, ay, az, lx, ly, lz);
	}
	//
	void setVector(const btVector3 &angular, const btVector3 &linear) { m_topVec = linear; m_bottomVec = angular; }
	void setValue(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
	{
		m_bottomVec.setValue(ax, ay, az); m_topVec.setValue(lx, ly, lz);
	}
	//
	void addVector(const btVector3 &angular, const btVector3 &linear) { m_topVec += linear; m_bottomVec += angular; }
	void addValue(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
	{
		m_bottomVec[0] += ax; m_bottomVec[1] += ay; m_bottomVec[2] += az;
		m_topVec[0] += lx; m_topVec[1] += ly; m_topVec[2] += lz;			
	}
	//
	const btVector3 & getLinear()  const { return m_topVec; }
	const btVector3 & getAngular() const { return m_bottomVec; }
	//
	void setLinear(const btVector3 &linear) { m_topVec = linear; }
	void setAngular(const btVector3 &angular) { m_bottomVec = angular; }
	//
	void addAngular(const btVector3 &angular) { m_bottomVec += angular; }
	void addLinear(const btVector3 &linear) { m_topVec += linear; }
	//
	void setZero() { m_topVec.setZero(); m_bottomVec.setZero(); }
	//
	btSpatialForceVector & operator += (const btSpatialForceVector &vec) { m_topVec += vec.m_topVec; m_bottomVec += vec.m_bottomVec; return *this; }
	btSpatialForceVector & operator -= (const btSpatialForceVector &vec) { m_topVec -= vec.m_topVec; m_bottomVec -= vec.m_bottomVec; return *this; }
	btSpatialForceVector operator - (const btSpatialForceVector &vec) const { return btSpatialForceVector(m_bottomVec - vec.m_bottomVec, m_topVec - vec.m_topVec); }
	btSpatialForceVector operator + (const btSpatialForceVector &vec) const { return btSpatialForceVector(m_bottomVec + vec.m_bottomVec, m_topVec + vec.m_topVec); }
	btSpatialForceVector operator - () const { return btSpatialForceVector(-m_bottomVec, -m_topVec); }
	btSpatialForceVector operator * (const btScalar &s) const { return btSpatialForceVector(s * m_bottomVec, s * m_topVec); }		
	//btSpatialForceVector & operator = (const btSpatialForceVector &vec) { m_topVec = vec.m_topVec; m_bottomVec = vec.m_bottomVec; return *this; }
};

struct btSpatialMotionVector
{
	btVector3 m_topVec, m_bottomVec;
	//
	btSpatialMotionVector() { setZero(); }
	btSpatialMotionVector(const btVector3 &angular, const btVector3 &linear) : m_topVec(angular), m_bottomVec(linear) {}		
	//
	void setVector(const btVector3 &angular, const btVector3 &linear) { m_topVec = angular; m_bottomVec = linear; }
	void setValue(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
	{
		m_topVec.setValue(ax, ay, az); m_bottomVec.setValue(lx, ly, lz);
	}
	//
	void addVector(const btVector3 &angular, const btVector3 &linear) { m_topVec += linear; m_bottomVec += angular; }
	void addValue(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
	{
		m_topVec[0] += ax; m_topVec[1] += ay; m_topVec[2] += az;
		m_bottomVec[0] += lx; m_bottomVec[1] += ly; m_bottomVec[2] += lz;			
	}
	//	
	const btVector3 & getAngular() const { return m_topVec; }
	const btVector3 & getLinear() const { return m_bottomVec; }
	//
	void setAngular(const btVector3 &angular) { m_topVec = angular; }
	void setLinear(const btVector3 &linear) { m_bottomVec = linear; }
	//
	void addAngular(const btVector3 &angular) { m_topVec += angular; }
	void addLinear(const btVector3 &linear) { m_bottomVec += linear; }
	//
	void setZero() { m_topVec.setZero(); m_bottomVec.setZero(); }
	//
	btScalar dot(const btSpatialForceVector &b) const
	{
		return m_bottomVec.dot(b.m_topVec) + m_topVec.dot(b.m_bottomVec);
	}
	//
	template<typename SpatialVectorType>
	void cross(const SpatialVectorType &b, SpatialVectorType &out) const
	{
		out.m_topVec = m_topVec.cross(b.m_topVec);
		out.m_bottomVec = m_bottomVec.cross(b.m_topVec) + m_topVec.cross(b.m_bottomVec);
	}
	template<typename SpatialVectorType>
	SpatialVectorType cross(const SpatialVectorType &b) const
	{
		SpatialVectorType out;
		out.m_topVec = m_topVec.cross(b.m_topVec);
		out.m_bottomVec = m_bottomVec.cross(b.m_topVec) + m_topVec.cross(b.m_bottomVec);
		return out;
	}
	//
	btSpatialMotionVector & operator += (const btSpatialMotionVector &vec) { m_topVec += vec.m_topVec; m_bottomVec += vec.m_bottomVec; return *this; }
	btSpatialMotionVector & operator -= (const btSpatialMotionVector &vec) { m_topVec -= vec.m_topVec; m_bottomVec -= vec.m_bottomVec; return *this; }
	btSpatialMotionVector & operator *= (const btScalar &s) { m_topVec *= s; m_bottomVec *= s; return *this; }
	btSpatialMotionVector operator - (const btSpatialMotionVector &vec) const { return btSpatialMotionVector(m_topVec - vec.m_topVec, m_bottomVec - vec.m_bottomVec); }
	btSpatialMotionVector operator + (const btSpatialMotionVector &vec) const { return btSpatialMotionVector(m_topVec + vec.m_topVec, m_bottomVec + vec.m_bottomVec); }
	btSpatialMotionVector operator - () const { return btSpatialMotionVector(-m_topVec, -m_bottomVec); }
	btSpatialMotionVector operator * (const btScalar &s) const { return btSpatialMotionVector(s * m_topVec, s * m_bottomVec); }
};

struct btSymmetricSpatialDyad
{
	btMatrix3x3 m_topLeftMat, m_topRightMat, m_bottomLeftMat;
	//		
	btSymmetricSpatialDyad() { setIdentity(); }
	btSymmetricSpatialDyad(const btMatrix3x3 &topLeftMat, const btMatrix3x3 &topRightMat, const btMatrix3x3 &bottomLeftMat) { setMatrix(topLeftMat, topRightMat, bottomLeftMat); }			
	//
	void setMatrix(const btMatrix3x3 &topLeftMat, const btMatrix3x3 &topRightMat, const btMatrix3x3 &bottomLeftMat)
	{
		m_topLeftMat = topLeftMat;
		m_topRightMat = topRightMat;
		m_bottomLeftMat = bottomLeftMat;
	}
	//
	void addMatrix(const btMatrix3x3 &topLeftMat, const btMatrix3x3 &topRightMat, const btMatrix3x3 &bottomLeftMat)
	{
		m_topLeftMat += topLeftMat;
		m_topRightMat += topRightMat;
		m_bottomLeftMat += bottomLeftMat;
	}
	//
	void setIdentity() { m_topLeftMat.setIdentity(); m_topRightMat.setIdentity(); m_bottomLeftMat.setIdentity();  }
	//
	btSymmetricSpatialDyad & operator -= (const btSymmetricSpatialDyad &mat)
	{
		m_topLeftMat -= mat.m_topLeftMat;
		m_topRightMat -= mat.m_topRightMat;
		m_bottomLeftMat -= mat.m_bottomLeftMat;
		return *this; 
	}
	//
	btSpatialForceVector operator * (const btSpatialMotionVector &vec)
	{
		return btSpatialForceVector(m_bottomLeftMat * vec.m_topVec + m_topLeftMat.transpose() * vec.m_bottomVec, m_topLeftMat * vec.m_topVec + m_topRightMat * vec.m_bottomVec);
	}
};

struct btSpatialTransformationMatrix
{
	btMatrix3x3 m_rotMat; //btMatrix3x3 m_trnCrossMat;
	btVector3 m_trnVec;
	//
	enum eOutputOperation
	{
		None = 0,
		Add = 1,
		Subtract = 2
	};
	//
	template<typename SpatialVectorType>
	void transform(	const SpatialVectorType &inVec,
                      SpatialVectorType &outVec,
					eOutputOperation outOp = None)
	{
		if(outOp == None)
		{
			outVec.m_topVec = m_rotMat * inVec.m_topVec;
			outVec.m_bottomVec = -m_trnVec.cross(outVec.m_topVec) + m_rotMat * inVec.m_bottomVec;
		}
		else if(outOp == Add)
		{
			outVec.m_topVec += m_rotMat * inVec.m_topVec;
			outVec.m_bottomVec += -m_trnVec.cross(outVec.m_topVec) + m_rotMat * inVec.m_bottomVec;
		}
		else if(outOp == Subtract)
		{
			outVec.m_topVec -= m_rotMat * inVec.m_topVec;
			outVec.m_bottomVec -= -m_trnVec.cross(outVec.m_topVec) + m_rotMat * inVec.m_bottomVec;
		}
		
	}

	template<typename SpatialVectorType>
	void transformRotationOnly(	const SpatialVectorType &inVec,
								SpatialVectorType &outVec,
								eOutputOperation outOp = None)
	{
		if(outOp == None)
		{
			outVec.m_topVec = m_rotMat * inVec.m_topVec;
			outVec.m_bottomVec = m_rotMat * inVec.m_bottomVec;
		}
		else if(outOp == Add)
		{
			outVec.m_topVec += m_rotMat * inVec.m_topVec;
			outVec.m_bottomVec += m_rotMat * inVec.m_bottomVec;
		}
		else if(outOp == Subtract)
		{
			outVec.m_topVec -= m_rotMat * inVec.m_topVec;
			outVec.m_bottomVec -= m_rotMat * inVec.m_bottomVec;
		}
		
	}

	template<typename SpatialVectorType>
	void transformInverse(	const SpatialVectorType &inVec,
							SpatialVectorType &outVec,
							eOutputOperation outOp = None)
	{
		if(outOp == None)
		{
			outVec.m_topVec = m_rotMat.transpose() * inVec.m_topVec;
			outVec.m_bottomVec = m_rotMat.transpose() * (inVec.m_bottomVec + m_trnVec.cross(inVec.m_topVec));
		}
		else if(outOp == Add)
		{
			outVec.m_topVec += m_rotMat.transpose() * inVec.m_topVec;
			outVec.m_bottomVec += m_rotMat.transpose() * (inVec.m_bottomVec + m_trnVec.cross(inVec.m_topVec));
		}
		else if(outOp == Subtract)
		{
			outVec.m_topVec -= m_rotMat.transpose() * inVec.m_topVec;
			outVec.m_bottomVec -= m_rotMat.transpose() * (inVec.m_bottomVec + m_trnVec.cross(inVec.m_topVec));
		}			
	}

	template<typename SpatialVectorType>
	void transformInverseRotationOnly(	const SpatialVectorType &inVec,
										SpatialVectorType &outVec,
										eOutputOperation outOp = None)
	{
		if(outOp == None)
		{
			outVec.m_topVec = m_rotMat.transpose() * inVec.m_topVec;
			outVec.m_bottomVec = m_rotMat.transpose() * inVec.m_bottomVec;
		}
		else if(outOp == Add)
		{
			outVec.m_topVec += m_rotMat.transpose() * inVec.m_topVec;
			outVec.m_bottomVec += m_rotMat.transpose() * inVec.m_bottomVec;
		}
		else if(outOp == Subtract)
		{
			outVec.m_topVec -= m_rotMat.transpose() * inVec.m_topVec;
			outVec.m_bottomVec -= m_rotMat.transpose() * inVec.m_bottomVec;
		}
		
	}

	void transformInverse(	const btSymmetricSpatialDyad &inMat,
							btSymmetricSpatialDyad &outMat,
							eOutputOperation outOp = None)
	{
		const btMatrix3x3 r_cross(	0, -m_trnVec[2], m_trnVec[1],
								m_trnVec[2], 0, -m_trnVec[0],
								-m_trnVec[1], m_trnVec[0], 0);


		if(outOp == None)
		{
			outMat.m_topLeftMat = m_rotMat.transpose() * ( inMat.m_topLeftMat - inMat.m_topRightMat * r_cross ) * m_rotMat;
			outMat.m_topRightMat = m_rotMat.transpose() * inMat.m_topRightMat * m_rotMat;
			outMat.m_bottomLeftMat = m_rotMat.transpose() * (r_cross * (inMat.m_topLeftMat - inMat.m_topRightMat * r_cross) + inMat.m_bottomLeftMat - inMat.m_topLeftMat.transpose() * r_cross) * m_rotMat;
		}
		else if(outOp == Add)
		{
			outMat.m_topLeftMat += m_rotMat.transpose() * ( inMat.m_topLeftMat - inMat.m_topRightMat * r_cross ) * m_rotMat;
			outMat.m_topRightMat += m_rotMat.transpose() * inMat.m_topRightMat * m_rotMat;
			outMat.m_bottomLeftMat += m_rotMat.transpose() * (r_cross * (inMat.m_topLeftMat - inMat.m_topRightMat * r_cross) + inMat.m_bottomLeftMat - inMat.m_topLeftMat.transpose() * r_cross) * m_rotMat;
		}
		else if(outOp == Subtract)
		{
			outMat.m_topLeftMat -= m_rotMat.transpose() * ( inMat.m_topLeftMat - inMat.m_topRightMat * r_cross ) * m_rotMat;
			outMat.m_topRightMat -= m_rotMat.transpose() * inMat.m_topRightMat * m_rotMat;
			outMat.m_bottomLeftMat -= m_rotMat.transpose() * (r_cross * (inMat.m_topLeftMat - inMat.m_topRightMat * r_cross) + inMat.m_bottomLeftMat - inMat.m_topLeftMat.transpose() * r_cross) * m_rotMat;
		}
	}

	template<typename SpatialVectorType>
	SpatialVectorType operator * (const SpatialVectorType &vec)
	{
		SpatialVectorType out;
		transform(vec, out);
		return out;
	}
};

template<typename SpatialVectorType>
void symmetricSpatialOuterProduct(const SpatialVectorType &a, const SpatialVectorType &b, btSymmetricSpatialDyad &out)
{
	//output op maybe?

	out.m_topLeftMat = outerProduct(a.m_topVec, b.m_bottomVec);
	out.m_topRightMat = outerProduct(a.m_topVec, b.m_topVec);
	out.m_topLeftMat = outerProduct(a.m_bottomVec, b.m_bottomVec);
	//maybe simple a*spatTranspose(a) would be nicer?
}

template<typename SpatialVectorType>
btSymmetricSpatialDyad symmetricSpatialOuterProduct(const SpatialVectorType &a, const SpatialVectorType &b)
{
	btSymmetricSpatialDyad out;

	out.m_topLeftMat = outerProduct(a.m_topVec, b.m_bottomVec);
	out.m_topRightMat = outerProduct(a.m_topVec, b.m_topVec);
	out.m_bottomLeftMat = outerProduct(a.m_bottomVec, b.m_bottomVec);

	return out;
	//maybe simple a*spatTranspose(a) would be nicer?
}

#endif //BT_SPATIAL_ALGEBRA_H