1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
|
#include "MultiBodyTreeImpl.hpp"
namespace btInverseDynamics {
MultiBodyTree::MultiBodyImpl::MultiBodyImpl(int num_bodies_, int num_dofs_)
: m_num_bodies(num_bodies_), m_num_dofs(num_dofs_)
#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
,m_m3x(3,m_num_dofs)
#endif
{
#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
resize(m_m3x,m_num_dofs);
#endif
m_body_list.resize(num_bodies_);
m_parent_index.resize(num_bodies_);
m_child_indices.resize(num_bodies_);
m_user_int.resize(num_bodies_);
m_user_ptr.resize(num_bodies_);
m_world_gravity(0) = 0.0;
m_world_gravity(1) = 0.0;
m_world_gravity(2) = -9.8;
}
const char *MultiBodyTree::MultiBodyImpl::jointTypeToString(const JointType &type) const {
switch (type) {
case FIXED:
return "fixed";
case REVOLUTE:
return "revolute";
case PRISMATIC:
return "prismatic";
case FLOATING:
return "floating";
}
return "error: invalid";
}
inline void indent(const int &level) {
for (int j = 0; j < level; j++)
id_printf(" "); // indent
}
void MultiBodyTree::MultiBodyImpl::printTree() {
id_printf("body %.2d[%s]: root\n", 0, jointTypeToString(m_body_list[0].m_joint_type));
printTree(0, 0);
}
void MultiBodyTree::MultiBodyImpl::printTreeData() {
for (idArrayIdx i = 0; i < m_body_list.size(); i++) {
RigidBody &body = m_body_list[i];
id_printf("body: %d\n", static_cast<int>(i));
id_printf("type: %s\n", jointTypeToString(body.m_joint_type));
id_printf("q_index= %d\n", body.m_q_index);
id_printf("Jac_JR= [%f;%f;%f]\n", body.m_Jac_JR(0), body.m_Jac_JR(1), body.m_Jac_JR(2));
id_printf("Jac_JT= [%f;%f;%f]\n", body.m_Jac_JT(0), body.m_Jac_JT(1), body.m_Jac_JT(2));
id_printf("mass = %f\n", body.m_mass);
id_printf("mass * com = [%f %f %f]\n", body.m_body_mass_com(0), body.m_body_mass_com(1),
body.m_body_mass_com(2));
id_printf("I_o= [%f %f %f;\n"
" %f %f %f;\n"
" %f %f %f]\n",
body.m_body_I_body(0, 0), body.m_body_I_body(0, 1), body.m_body_I_body(0, 2),
body.m_body_I_body(1, 0), body.m_body_I_body(1, 1), body.m_body_I_body(1, 2),
body.m_body_I_body(2, 0), body.m_body_I_body(2, 1), body.m_body_I_body(2, 2));
id_printf("parent_pos_parent_body_ref= [%f %f %f]\n", body.m_parent_pos_parent_body_ref(0),
body.m_parent_pos_parent_body_ref(1), body.m_parent_pos_parent_body_ref(2));
}
}
int MultiBodyTree::MultiBodyImpl::bodyNumDoFs(const JointType &type) const {
switch (type) {
case FIXED:
return 0;
case REVOLUTE:
case PRISMATIC:
return 1;
case FLOATING:
return 6;
}
error_message("unknown joint type %d\n", type);
return 0;
}
void MultiBodyTree::MultiBodyImpl::printTree(int index, int indentation) {
// this is adapted from URDF2Bullet.
// TODO: fix this and print proper graph (similar to git --log --graph)
int num_children = m_child_indices[index].size();
indentation += 2;
int count = 0;
for (int i = 0; i < num_children; i++) {
int child_index = m_child_indices[index][i];
indent(indentation);
id_printf("body %.2d[%s]: %.2d is child no. %d (qi= %d .. %d) \n", index,
jointTypeToString(m_body_list[index].m_joint_type), child_index, (count++) + 1,
m_body_list[index].m_q_index,
m_body_list[index].m_q_index + bodyNumDoFs(m_body_list[index].m_joint_type));
// first grandchild
printTree(child_index, indentation);
}
}
int MultiBodyTree::MultiBodyImpl::setGravityInWorldFrame(const vec3 &gravity) {
m_world_gravity = gravity;
return 0;
}
int MultiBodyTree::MultiBodyImpl::generateIndexSets() {
m_body_revolute_list.resize(0);
m_body_prismatic_list.resize(0);
int q_index = 0;
for (idArrayIdx i = 0; i < m_body_list.size(); i++) {
RigidBody &body = m_body_list[i];
body.m_q_index = -1;
switch (body.m_joint_type) {
case REVOLUTE:
m_body_revolute_list.push_back(i);
body.m_q_index = q_index;
q_index++;
break;
case PRISMATIC:
m_body_prismatic_list.push_back(i);
body.m_q_index = q_index;
q_index++;
break;
case FIXED:
// do nothing
break;
case FLOATING:
m_body_floating_list.push_back(i);
body.m_q_index = q_index;
q_index += 6;
break;
default:
error_message("unsupported joint type %d\n", body.m_joint_type);
return -1;
}
}
// sanity check
if (q_index != m_num_dofs) {
error_message("internal error, q_index= %d but num_dofs %d\n", q_index, m_num_dofs);
return -1;
}
m_child_indices.resize(m_body_list.size());
for (idArrayIdx child = 1; child < m_parent_index.size(); child++) {
const int &parent = m_parent_index[child];
if (parent >= 0 && parent < (static_cast<int>(m_parent_index.size()) - 1)) {
m_child_indices[parent].push_back(child);
} else {
if (-1 == parent) {
// multiple bodies are directly linked to the environment, ie, not a single root
error_message("building index sets parent(%zu)= -1 (multiple roots)\n", child);
} else {
// should never happen
error_message(
"building index sets. parent_index[%zu]= %d, but m_parent_index.size()= %d\n",
child, parent, static_cast<int>(m_parent_index.size()));
}
return -1;
}
}
return 0;
}
void MultiBodyTree::MultiBodyImpl::calculateStaticData() {
// relative kinematics that are not a function of q, u, dot_u
for (idArrayIdx i = 0; i < m_body_list.size(); i++) {
RigidBody &body = m_body_list[i];
switch (body.m_joint_type) {
case REVOLUTE:
body.m_parent_vel_rel(0) = 0;
body.m_parent_vel_rel(1) = 0;
body.m_parent_vel_rel(2) = 0;
body.m_parent_acc_rel(0) = 0;
body.m_parent_acc_rel(1) = 0;
body.m_parent_acc_rel(2) = 0;
body.m_parent_pos_parent_body = body.m_parent_pos_parent_body_ref;
break;
case PRISMATIC:
body.m_body_T_parent = body.m_body_T_parent_ref;
body.m_parent_Jac_JT = body.m_body_T_parent_ref.transpose() * body.m_Jac_JT;
body.m_body_ang_vel_rel(0) = 0;
body.m_body_ang_vel_rel(1) = 0;
body.m_body_ang_vel_rel(2) = 0;
body.m_body_ang_acc_rel(0) = 0;
body.m_body_ang_acc_rel(1) = 0;
body.m_body_ang_acc_rel(2) = 0;
break;
case FIXED:
body.m_parent_pos_parent_body = body.m_parent_pos_parent_body_ref;
body.m_body_T_parent = body.m_body_T_parent_ref;
body.m_body_ang_vel_rel(0) = 0;
body.m_body_ang_vel_rel(1) = 0;
body.m_body_ang_vel_rel(2) = 0;
body.m_parent_vel_rel(0) = 0;
body.m_parent_vel_rel(1) = 0;
body.m_parent_vel_rel(2) = 0;
body.m_body_ang_acc_rel(0) = 0;
body.m_body_ang_acc_rel(1) = 0;
body.m_body_ang_acc_rel(2) = 0;
body.m_parent_acc_rel(0) = 0;
body.m_parent_acc_rel(1) = 0;
body.m_parent_acc_rel(2) = 0;
break;
case FLOATING:
// no static data
break;
}
// resize & initialize jacobians to zero.
#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
body.m_body_dot_Jac_T_u(0) = 0.0;
body.m_body_dot_Jac_T_u(1) = 0.0;
body.m_body_dot_Jac_T_u(2) = 0.0;
body.m_body_dot_Jac_R_u(0) = 0.0;
body.m_body_dot_Jac_R_u(1) = 0.0;
body.m_body_dot_Jac_R_u(2) = 0.0;
resize(body.m_body_Jac_T,m_num_dofs);
resize(body.m_body_Jac_R,m_num_dofs);
body.m_body_Jac_T.setZero();
body.m_body_Jac_R.setZero();
#endif //
}
}
int MultiBodyTree::MultiBodyImpl::calculateInverseDynamics(const vecx &q, const vecx &u,
const vecx &dot_u, vecx *joint_forces) {
if (q.size() != m_num_dofs || u.size() != m_num_dofs || dot_u.size() != m_num_dofs ||
joint_forces->size() != m_num_dofs) {
error_message("wrong vector dimension. system has %d DOFs,\n"
"but dim(q)= %d, dim(u)= %d, dim(dot_u)= %d, dim(joint_forces)= %d\n",
m_num_dofs, static_cast<int>(q.size()), static_cast<int>(u.size()),
static_cast<int>(dot_u.size()), static_cast<int>(joint_forces->size()));
return -1;
}
// 1. relative kinematics
if(-1 == calculateKinematics(q,u,dot_u, POSITION_VELOCITY_ACCELERATION)) {
error_message("error in calculateKinematics\n");
return -1;
}
// 2. update contributions to equations of motion for every body.
for (idArrayIdx i = 0; i < m_body_list.size(); i++) {
RigidBody &body = m_body_list[i];
// 3.4 update dynamic terms (rate of change of angular & linear momentum)
body.m_eom_lhs_rotational =
body.m_body_I_body * body.m_body_ang_acc + body.m_body_mass_com.cross(body.m_body_acc) +
body.m_body_ang_vel.cross(body.m_body_I_body * body.m_body_ang_vel) -
body.m_body_moment_user;
body.m_eom_lhs_translational =
body.m_body_ang_acc.cross(body.m_body_mass_com) + body.m_mass * body.m_body_acc +
body.m_body_ang_vel.cross(body.m_body_ang_vel.cross(body.m_body_mass_com)) -
body.m_body_force_user;
}
// 3. calculate full set of forces at parent joint
// (not directly calculating the joint force along the free direction
// simplifies inclusion of fixed joints.
// An alternative would be to fuse bodies in a pre-processing step,
// but that would make changing masses online harder (eg, payload masses
// added with fixed joints to a gripper)
// Also, this enables adding zero weight bodies as a way to calculate frame poses
// for force elements, etc.
for (int body_idx = m_body_list.size() - 1; body_idx >= 0; body_idx--) {
// sum of forces and moments acting on this body from its children
vec3 sum_f_children;
vec3 sum_m_children;
setZero(sum_f_children);
setZero(sum_m_children);
for (idArrayIdx child_list_idx = 0; child_list_idx < m_child_indices[body_idx].size();
child_list_idx++) {
const RigidBody &child = m_body_list[m_child_indices[body_idx][child_list_idx]];
vec3 child_joint_force_in_this_frame =
child.m_body_T_parent.transpose() * child.m_force_at_joint;
sum_f_children -= child_joint_force_in_this_frame;
sum_m_children -= child.m_body_T_parent.transpose() * child.m_moment_at_joint +
child.m_parent_pos_parent_body.cross(child_joint_force_in_this_frame);
}
RigidBody &body = m_body_list[body_idx];
body.m_force_at_joint = body.m_eom_lhs_translational - sum_f_children;
body.m_moment_at_joint = body.m_eom_lhs_rotational - sum_m_children;
}
// 4. Calculate Joint forces.
// These are the components of force_at_joint/moment_at_joint
// in the free directions given by Jac_JT/Jac_JR
// 4.1 revolute joints
for (idArrayIdx i = 0; i < m_body_revolute_list.size(); i++) {
RigidBody &body = m_body_list[m_body_revolute_list[i]];
// (*joint_forces)(body.m_q_index) = body.m_Jac_JR.transpose() * body.m_moment_at_joint;
(*joint_forces)(body.m_q_index) = body.m_Jac_JR.dot(body.m_moment_at_joint);
}
// 4.2 for prismatic joints
for (idArrayIdx i = 0; i < m_body_prismatic_list.size(); i++) {
RigidBody &body = m_body_list[m_body_prismatic_list[i]];
// (*joint_forces)(body.m_q_index) = body.m_Jac_JT.transpose() * body.m_force_at_joint;
(*joint_forces)(body.m_q_index) = body.m_Jac_JT.dot(body.m_force_at_joint);
}
// 4.3 floating bodies (6-DoF joints)
for (idArrayIdx i = 0; i < m_body_floating_list.size(); i++) {
RigidBody &body = m_body_list[m_body_floating_list[i]];
(*joint_forces)(body.m_q_index + 0) = body.m_moment_at_joint(0);
(*joint_forces)(body.m_q_index + 1) = body.m_moment_at_joint(1);
(*joint_forces)(body.m_q_index + 2) = body.m_moment_at_joint(2);
(*joint_forces)(body.m_q_index + 3) = body.m_force_at_joint(0);
(*joint_forces)(body.m_q_index + 4) = body.m_force_at_joint(1);
(*joint_forces)(body.m_q_index + 5) = body.m_force_at_joint(2);
}
return 0;
}
int MultiBodyTree::MultiBodyImpl::calculateKinematics(const vecx &q, const vecx &u, const vecx& dot_u,
const KinUpdateType type) {
if (q.size() != m_num_dofs || u.size() != m_num_dofs || dot_u.size() != m_num_dofs ) {
error_message("wrong vector dimension. system has %d DOFs,\n"
"but dim(q)= %d, dim(u)= %d, dim(dot_u)= %d\n",
m_num_dofs, static_cast<int>(q.size()), static_cast<int>(u.size()),
static_cast<int>(dot_u.size()));
return -1;
}
if(type != POSITION_ONLY && type != POSITION_VELOCITY && type != POSITION_VELOCITY_ACCELERATION) {
error_message("invalid type %d\n", type);
return -1;
}
// 1. update relative kinematics
// 1.1 for revolute
for (idArrayIdx i = 0; i < m_body_revolute_list.size(); i++) {
RigidBody &body = m_body_list[m_body_revolute_list[i]];
mat33 T;
bodyTParentFromAxisAngle(body.m_Jac_JR, q(body.m_q_index), &T);
body.m_body_T_parent = T * body.m_body_T_parent_ref;
if(type >= POSITION_VELOCITY) {
body.m_body_ang_vel_rel = body.m_Jac_JR * u(body.m_q_index);
}
if(type >= POSITION_VELOCITY_ACCELERATION) {
body.m_body_ang_acc_rel = body.m_Jac_JR * dot_u(body.m_q_index);
}
}
// 1.2 for prismatic
for (idArrayIdx i = 0; i < m_body_prismatic_list.size(); i++) {
RigidBody &body = m_body_list[m_body_prismatic_list[i]];
body.m_parent_pos_parent_body =
body.m_parent_pos_parent_body_ref + body.m_parent_Jac_JT * q(body.m_q_index);
if(type >= POSITION_VELOCITY) {
body.m_parent_vel_rel =
body.m_body_T_parent_ref.transpose() * body.m_Jac_JT * u(body.m_q_index);
}
if(type >= POSITION_VELOCITY_ACCELERATION) {
body.m_parent_acc_rel = body.m_parent_Jac_JT * dot_u(body.m_q_index);
}
}
// 1.3 fixed joints: nothing to do
// 1.4 6dof joints:
for (idArrayIdx i = 0; i < m_body_floating_list.size(); i++) {
RigidBody &body = m_body_list[m_body_floating_list[i]];
body.m_body_T_parent = transformZ(q(body.m_q_index + 2)) *
transformY(q(body.m_q_index + 1)) * transformX(q(body.m_q_index));
body.m_parent_pos_parent_body(0) = q(body.m_q_index + 3);
body.m_parent_pos_parent_body(1) = q(body.m_q_index + 4);
body.m_parent_pos_parent_body(2) = q(body.m_q_index + 5);
body.m_parent_pos_parent_body = body.m_body_T_parent * body.m_parent_pos_parent_body;
if(type >= POSITION_VELOCITY) {
body.m_body_ang_vel_rel(0) = u(body.m_q_index + 0);
body.m_body_ang_vel_rel(1) = u(body.m_q_index + 1);
body.m_body_ang_vel_rel(2) = u(body.m_q_index + 2);
body.m_parent_vel_rel(0) = u(body.m_q_index + 3);
body.m_parent_vel_rel(1) = u(body.m_q_index + 4);
body.m_parent_vel_rel(2) = u(body.m_q_index + 5);
body.m_parent_vel_rel = body.m_body_T_parent.transpose() * body.m_parent_vel_rel;
}
if(type >= POSITION_VELOCITY_ACCELERATION) {
body.m_body_ang_acc_rel(0) = dot_u(body.m_q_index + 0);
body.m_body_ang_acc_rel(1) = dot_u(body.m_q_index + 1);
body.m_body_ang_acc_rel(2) = dot_u(body.m_q_index + 2);
body.m_parent_acc_rel(0) = dot_u(body.m_q_index + 3);
body.m_parent_acc_rel(1) = dot_u(body.m_q_index + 4);
body.m_parent_acc_rel(2) = dot_u(body.m_q_index + 5);
body.m_parent_acc_rel = body.m_body_T_parent.transpose() * body.m_parent_acc_rel;
}
}
// 2. absolute kinematic quantities (vector valued)
// NOTE: this should be optimized by specializing for different body types
// (e.g., relative rotation is always zero for prismatic joints, etc.)
// calculations for root body
{
RigidBody &body = m_body_list[0];
// 3.1 update absolute positions and orientations:
// will be required if we add force elements (eg springs between bodies,
// or contacts)
// not required right now, added here for debugging purposes
body.m_body_pos = body.m_body_T_parent * body.m_parent_pos_parent_body;
body.m_body_T_world = body.m_body_T_parent;
if(type >= POSITION_VELOCITY) {
// 3.2 update absolute velocities
body.m_body_ang_vel = body.m_body_ang_vel_rel;
body.m_body_vel = body.m_parent_vel_rel;
}
if(type >= POSITION_VELOCITY_ACCELERATION) {
// 3.3 update absolute accelerations
// NOTE: assumption: dot(J_JR) = 0; true here, but not for general joints
body.m_body_ang_acc = body.m_body_ang_acc_rel;
body.m_body_acc = body.m_body_T_parent * body.m_parent_acc_rel;
// add gravitational acceleration to root body
// this is an efficient way to add gravitational terms,
// but it does mean that the kinematics are no longer
// correct at the acceleration level
// NOTE: To get correct acceleration kinematics, just set world_gravity to zero
body.m_body_acc = body.m_body_acc - body.m_body_T_parent * m_world_gravity;
}
}
for (idArrayIdx i = 1; i < m_body_list.size(); i++) {
RigidBody &body = m_body_list[i];
RigidBody &parent = m_body_list[m_parent_index[i]];
// 2.1 update absolute positions and orientations:
// will be required if we add force elements (eg springs between bodies,
// or contacts) not required right now added here for debugging purposes
body.m_body_pos =
body.m_body_T_parent * (parent.m_body_pos + body.m_parent_pos_parent_body);
body.m_body_T_world = body.m_body_T_parent * parent.m_body_T_world;
if(type >= POSITION_VELOCITY) {
// 2.2 update absolute velocities
body.m_body_ang_vel =
body.m_body_T_parent * parent.m_body_ang_vel + body.m_body_ang_vel_rel;
body.m_body_vel =
body.m_body_T_parent *
(parent.m_body_vel + parent.m_body_ang_vel.cross(body.m_parent_pos_parent_body) +
body.m_parent_vel_rel);
}
if(type >= POSITION_VELOCITY_ACCELERATION) {
// 2.3 update absolute accelerations
// NOTE: assumption: dot(J_JR) = 0; true here, but not for general joints
body.m_body_ang_acc =
body.m_body_T_parent * parent.m_body_ang_acc -
body.m_body_ang_vel_rel.cross(body.m_body_T_parent * parent.m_body_ang_vel) +
body.m_body_ang_acc_rel;
body.m_body_acc =
body.m_body_T_parent *
(parent.m_body_acc + parent.m_body_ang_acc.cross(body.m_parent_pos_parent_body) +
parent.m_body_ang_vel.cross(parent.m_body_ang_vel.cross(body.m_parent_pos_parent_body)) +
2.0 * parent.m_body_ang_vel.cross(body.m_parent_vel_rel) + body.m_parent_acc_rel);
}
}
return 0;
}
#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
void MultiBodyTree::MultiBodyImpl::addRelativeJacobianComponent(RigidBody&body) {
const int& idx=body.m_q_index;
switch(body.m_joint_type) {
case FIXED:
break;
case REVOLUTE:
setMat3xElem(0,idx, body.m_Jac_JR(0), &body.m_body_Jac_R);
setMat3xElem(1,idx, body.m_Jac_JR(1), &body.m_body_Jac_R);
setMat3xElem(2,idx, body.m_Jac_JR(2), &body.m_body_Jac_R);
break;
case PRISMATIC:
setMat3xElem(0,idx, body.m_body_T_parent_ref(0,0)*body.m_Jac_JT(0)
+body.m_body_T_parent_ref(1,0)*body.m_Jac_JT(1)
+body.m_body_T_parent_ref(2,0)*body.m_Jac_JT(2),
&body.m_body_Jac_T);
setMat3xElem(1,idx,body.m_body_T_parent_ref(0,1)*body.m_Jac_JT(0)
+body.m_body_T_parent_ref(1,1)*body.m_Jac_JT(1)
+body.m_body_T_parent_ref(2,1)*body.m_Jac_JT(2),
&body.m_body_Jac_T);
setMat3xElem(2,idx, body.m_body_T_parent_ref(0,2)*body.m_Jac_JT(0)
+body.m_body_T_parent_ref(1,2)*body.m_Jac_JT(1)
+body.m_body_T_parent_ref(2,2)*body.m_Jac_JT(2),
&body.m_body_Jac_T);
break;
case FLOATING:
setMat3xElem(0,idx+0, 1.0, &body.m_body_Jac_R);
setMat3xElem(1,idx+1, 1.0, &body.m_body_Jac_R);
setMat3xElem(2,idx+2, 1.0, &body.m_body_Jac_R);
// body_Jac_T = body_T_parent.transpose();
setMat3xElem(0,idx+3, body.m_body_T_parent(0,0), &body.m_body_Jac_T);
setMat3xElem(0,idx+4, body.m_body_T_parent(1,0), &body.m_body_Jac_T);
setMat3xElem(0,idx+5, body.m_body_T_parent(2,0), &body.m_body_Jac_T);
setMat3xElem(1,idx+3, body.m_body_T_parent(0,1), &body.m_body_Jac_T);
setMat3xElem(1,idx+4, body.m_body_T_parent(1,1), &body.m_body_Jac_T);
setMat3xElem(1,idx+5, body.m_body_T_parent(2,1), &body.m_body_Jac_T);
setMat3xElem(2,idx+3, body.m_body_T_parent(0,2), &body.m_body_Jac_T);
setMat3xElem(2,idx+4, body.m_body_T_parent(1,2), &body.m_body_Jac_T);
setMat3xElem(2,idx+5, body.m_body_T_parent(2,2), &body.m_body_Jac_T);
break;
}
}
int MultiBodyTree::MultiBodyImpl::calculateJacobians(const vecx& q, const vecx& u, const KinUpdateType type) {
if (q.size() != m_num_dofs || u.size() != m_num_dofs) {
error_message("wrong vector dimension. system has %d DOFs,\n"
"but dim(q)= %d, dim(u)= %d\n",
m_num_dofs, static_cast<int>(q.size()), static_cast<int>(u.size()));
return -1;
}
if(type != POSITION_ONLY && type != POSITION_VELOCITY) {
error_message("invalid type %d\n", type);
return -1;
}
addRelativeJacobianComponent(m_body_list[0]);
for (idArrayIdx i = 1; i < m_body_list.size(); i++) {
RigidBody &body = m_body_list[i];
RigidBody &parent = m_body_list[m_parent_index[i]];
mul(body.m_body_T_parent, parent.m_body_Jac_R,& body.m_body_Jac_R);
body.m_body_Jac_T = parent.m_body_Jac_T;
mul(tildeOperator(body.m_parent_pos_parent_body),parent.m_body_Jac_R,&m_m3x);
sub(body.m_body_Jac_T,m_m3x, &body.m_body_Jac_T);
addRelativeJacobianComponent(body);
mul(body.m_body_T_parent, body.m_body_Jac_T,&body.m_body_Jac_T);
if(type >= POSITION_VELOCITY) {
body.m_body_dot_Jac_R_u = body.m_body_T_parent * parent.m_body_dot_Jac_R_u -
body.m_body_ang_vel_rel.cross(body.m_body_T_parent * parent.m_body_ang_vel);
body.m_body_dot_Jac_T_u = body.m_body_T_parent *
(parent.m_body_dot_Jac_T_u + parent.m_body_dot_Jac_R_u.cross(body.m_parent_pos_parent_body) +
parent.m_body_ang_vel.cross(parent.m_body_ang_vel.cross(body.m_parent_pos_parent_body)) +
2.0 * parent.m_body_ang_vel.cross(body.m_parent_vel_rel));
}
}
return 0;
}
#endif
static inline void setSixDoFJacobians(const int dof, vec3 &Jac_JR, vec3 &Jac_JT) {
switch (dof) {
// rotational part
case 0:
Jac_JR(0) = 1;
Jac_JR(1) = 0;
Jac_JR(2) = 0;
setZero(Jac_JT);
break;
case 1:
Jac_JR(0) = 0;
Jac_JR(1) = 1;
Jac_JR(2) = 0;
setZero(Jac_JT);
break;
case 2:
Jac_JR(0) = 0;
Jac_JR(1) = 0;
Jac_JR(2) = 1;
setZero(Jac_JT);
break;
// translational part
case 3:
setZero(Jac_JR);
Jac_JT(0) = 1;
Jac_JT(1) = 0;
Jac_JT(2) = 0;
break;
case 4:
setZero(Jac_JR);
Jac_JT(0) = 0;
Jac_JT(1) = 1;
Jac_JT(2) = 0;
break;
case 5:
setZero(Jac_JR);
Jac_JT(0) = 0;
Jac_JT(1) = 0;
Jac_JT(2) = 1;
break;
}
}
static inline int jointNumDoFs(const JointType &type) {
switch (type) {
case FIXED:
return 0;
case REVOLUTE:
case PRISMATIC:
return 1;
case FLOATING:
return 6;
}
// this should never happen
error_message("invalid joint type\n");
// TODO add configurable abort/crash function
abort();
return 0;
}
int MultiBodyTree::MultiBodyImpl::calculateMassMatrix(const vecx &q, const bool update_kinematics,
const bool initialize_matrix,
const bool set_lower_triangular_matrix,
matxx *mass_matrix) {
// This calculates the joint space mass matrix for the multibody system.
// The algorithm is essentially an implementation of "method 3"
// in "Efficient Dynamic Simulation of Robotic Mechanisms" (Walker and Orin, 1982)
// (Later named "Composite Rigid Body Algorithm" by Featherstone).
//
// This implementation, however, handles branched systems and uses a formulation centered
// on the origin of the body-fixed frame to avoid re-computing various quantities at the com.
if (q.size() != m_num_dofs || mass_matrix->rows() != m_num_dofs ||
mass_matrix->cols() != m_num_dofs) {
error_message("Dimension error. System has %d DOFs,\n"
"but dim(q)= %d, dim(mass_matrix)= %d x %d\n",
m_num_dofs, static_cast<int>(q.size()), static_cast<int>(mass_matrix->rows()),
static_cast<int>(mass_matrix->cols()));
return -1;
}
// TODO add optimized zeroing function?
if (initialize_matrix) {
for (int i = 0; i < m_num_dofs; i++) {
for (int j = 0; j < m_num_dofs; j++) {
setMatxxElem(i, j, 0.0, mass_matrix);
}
}
}
if (update_kinematics) {
// 1. update relative kinematics
// 1.1 for revolute joints
for (idArrayIdx i = 0; i < m_body_revolute_list.size(); i++) {
RigidBody &body = m_body_list[m_body_revolute_list[i]];
// from reference orientation (q=0) of body-fixed frame to current orientation
mat33 body_T_body_ref;
bodyTParentFromAxisAngle(body.m_Jac_JR, q(body.m_q_index), &body_T_body_ref);
body.m_body_T_parent = body_T_body_ref * body.m_body_T_parent_ref;
}
// 1.2 for prismatic joints
for (idArrayIdx i = 0; i < m_body_prismatic_list.size(); i++) {
RigidBody &body = m_body_list[m_body_prismatic_list[i]];
// body.m_body_T_parent= fixed
body.m_parent_pos_parent_body =
body.m_parent_pos_parent_body_ref + body.m_parent_Jac_JT * q(body.m_q_index);
}
// 1.3 fixed joints: nothing to do
// 1.4 6dof joints:
for (idArrayIdx i = 0; i < m_body_floating_list.size(); i++) {
RigidBody &body = m_body_list[m_body_floating_list[i]];
body.m_body_T_parent = transformZ(q(body.m_q_index + 2)) *
transformY(q(body.m_q_index + 1)) *
transformX(q(body.m_q_index));
body.m_parent_pos_parent_body(0) = q(body.m_q_index + 3);
body.m_parent_pos_parent_body(1) = q(body.m_q_index + 4);
body.m_parent_pos_parent_body(2) = q(body.m_q_index + 5);
body.m_parent_pos_parent_body = body.m_body_T_parent * body.m_parent_pos_parent_body;
}
}
for (int i = m_body_list.size() - 1; i >= 0; i--) {
RigidBody &body = m_body_list[i];
// calculate mass, center of mass and inertia of "composite rigid body",
// ie, sub-tree starting at current body
body.m_subtree_mass = body.m_mass;
body.m_body_subtree_mass_com = body.m_body_mass_com;
body.m_body_subtree_I_body = body.m_body_I_body;
for (idArrayIdx c = 0; c < m_child_indices[i].size(); c++) {
RigidBody &child = m_body_list[m_child_indices[i][c]];
mat33 body_T_child = child.m_body_T_parent.transpose();
body.m_subtree_mass += child.m_subtree_mass;
body.m_body_subtree_mass_com += body_T_child * child.m_body_subtree_mass_com +
child.m_parent_pos_parent_body * child.m_subtree_mass;
body.m_body_subtree_I_body +=
body_T_child * child.m_body_subtree_I_body * child.m_body_T_parent;
if (child.m_subtree_mass > 0) {
// Shift the reference point for the child subtree inertia using the
// Huygens-Steiner ("parallel axis") theorem.
// (First shift from child origin to child com, then from there to this body's
// origin)
vec3 r_com = body_T_child * child.m_body_subtree_mass_com / child.m_subtree_mass;
mat33 tilde_r_child_com = tildeOperator(r_com);
mat33 tilde_r_body_com = tildeOperator(child.m_parent_pos_parent_body + r_com);
body.m_body_subtree_I_body +=
child.m_subtree_mass *
(tilde_r_child_com * tilde_r_child_com - tilde_r_body_com * tilde_r_body_com);
}
}
}
for (int i = m_body_list.size() - 1; i >= 0; i--) {
const RigidBody &body = m_body_list[i];
// determine DoF-range for body
const int q_index_min = body.m_q_index;
const int q_index_max = q_index_min + jointNumDoFs(body.m_joint_type) - 1;
// loop over the DoFs used by this body
// local joint jacobians (ok as is for 1-DoF joints)
vec3 Jac_JR = body.m_Jac_JR;
vec3 Jac_JT = body.m_Jac_JT;
for (int col = q_index_max; col >= q_index_min; col--) {
// set jacobians for 6-DoF joints
if (FLOATING == body.m_joint_type) {
setSixDoFJacobians(col - q_index_min, Jac_JR, Jac_JT);
}
vec3 body_eom_rot =
body.m_body_subtree_I_body * Jac_JR + body.m_body_subtree_mass_com.cross(Jac_JT);
vec3 body_eom_trans =
body.m_subtree_mass * Jac_JT - body.m_body_subtree_mass_com.cross(Jac_JR);
setMatxxElem(col, col, Jac_JR.dot(body_eom_rot) + Jac_JT.dot(body_eom_trans), mass_matrix);
// rest of the mass matrix column upwards
{
// 1. for multi-dof joints, rest of the dofs of this body
for (int row = col - 1; row >= q_index_min; row--) {
if (FLOATING != body.m_joint_type) {
error_message("??\n");
return -1;
}
setSixDoFJacobians(row - q_index_min, Jac_JR, Jac_JT);
const double Mrc = Jac_JR.dot(body_eom_rot) + Jac_JT.dot(body_eom_trans);
setMatxxElem(col, row, Mrc, mass_matrix);
}
// 2. ancestor dofs
int child_idx = i;
int parent_idx = m_parent_index[i];
while (parent_idx >= 0) {
const RigidBody &child_body = m_body_list[child_idx];
const RigidBody &parent_body = m_body_list[parent_idx];
const mat33 parent_T_child = child_body.m_body_T_parent.transpose();
body_eom_rot = parent_T_child * body_eom_rot;
body_eom_trans = parent_T_child * body_eom_trans;
body_eom_rot += child_body.m_parent_pos_parent_body.cross(body_eom_trans);
const int parent_body_q_index_min = parent_body.m_q_index;
const int parent_body_q_index_max =
parent_body_q_index_min + jointNumDoFs(parent_body.m_joint_type) - 1;
vec3 Jac_JR = parent_body.m_Jac_JR;
vec3 Jac_JT = parent_body.m_Jac_JT;
for (int row = parent_body_q_index_max; row >= parent_body_q_index_min; row--) {
// set jacobians for 6-DoF joints
if (FLOATING == parent_body.m_joint_type) {
setSixDoFJacobians(row - parent_body_q_index_min, Jac_JR, Jac_JT);
}
const double Mrc = Jac_JR.dot(body_eom_rot) + Jac_JT.dot(body_eom_trans);
setMatxxElem(col, row, Mrc, mass_matrix);
}
child_idx = parent_idx;
parent_idx = m_parent_index[child_idx];
}
}
}
}
if (set_lower_triangular_matrix) {
for (int col = 0; col < m_num_dofs; col++) {
for (int row = 0; row < col; row++) {
setMatxxElem(row, col, (*mass_matrix)(col, row), mass_matrix);
}
}
}
return 0;
}
// utility macro
#define CHECK_IF_BODY_INDEX_IS_VALID(index) \
do { \
if (index < 0 || index >= m_num_bodies) { \
error_message("invalid index %d (num_bodies= %d)\n", index, m_num_bodies); \
return -1; \
} \
} while (0)
int MultiBodyTree::MultiBodyImpl::getParentIndex(const int body_index, int *p) {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
*p = m_parent_index[body_index];
return 0;
}
int MultiBodyTree::MultiBodyImpl::getUserInt(const int body_index, int *user_int) const {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
*user_int = m_user_int[body_index];
return 0;
}
int MultiBodyTree::MultiBodyImpl::getUserPtr(const int body_index, void **user_ptr) const {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
*user_ptr = m_user_ptr[body_index];
return 0;
}
int MultiBodyTree::MultiBodyImpl::setUserInt(const int body_index, const int user_int) {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
m_user_int[body_index] = user_int;
return 0;
}
int MultiBodyTree::MultiBodyImpl::setUserPtr(const int body_index, void *const user_ptr) {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
m_user_ptr[body_index] = user_ptr;
return 0;
}
int MultiBodyTree::MultiBodyImpl::getBodyOrigin(int body_index, vec3 *world_origin) const {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
const RigidBody &body = m_body_list[body_index];
*world_origin = body.m_body_T_world.transpose() * body.m_body_pos;
return 0;
}
int MultiBodyTree::MultiBodyImpl::getBodyCoM(int body_index, vec3 *world_com) const {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
const RigidBody &body = m_body_list[body_index];
if (body.m_mass > 0) {
*world_com = body.m_body_T_world.transpose() *
(body.m_body_pos + body.m_body_mass_com / body.m_mass);
} else {
*world_com = body.m_body_T_world.transpose() * (body.m_body_pos);
}
return 0;
}
int MultiBodyTree::MultiBodyImpl::getBodyTransform(int body_index, mat33 *world_T_body) const {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
const RigidBody &body = m_body_list[body_index];
*world_T_body = body.m_body_T_world.transpose();
return 0;
}
int MultiBodyTree::MultiBodyImpl::getBodyAngularVelocity(int body_index, vec3 *world_omega) const {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
const RigidBody &body = m_body_list[body_index];
*world_omega = body.m_body_T_world.transpose() * body.m_body_ang_vel;
return 0;
}
int MultiBodyTree::MultiBodyImpl::getBodyLinearVelocity(int body_index,
vec3 *world_velocity) const {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
const RigidBody &body = m_body_list[body_index];
*world_velocity = body.m_body_T_world.transpose() * body.m_body_vel;
return 0;
}
int MultiBodyTree::MultiBodyImpl::getBodyLinearVelocityCoM(int body_index,
vec3 *world_velocity) const {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
const RigidBody &body = m_body_list[body_index];
vec3 com;
if (body.m_mass > 0) {
com = body.m_body_mass_com / body.m_mass;
} else {
com(0) = 0;
com(1) = 0;
com(2) = 0;
}
*world_velocity =
body.m_body_T_world.transpose() * (body.m_body_vel + body.m_body_ang_vel.cross(com));
return 0;
}
int MultiBodyTree::MultiBodyImpl::getBodyAngularAcceleration(int body_index,
vec3 *world_dot_omega) const {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
const RigidBody &body = m_body_list[body_index];
*world_dot_omega = body.m_body_T_world.transpose() * body.m_body_ang_acc;
return 0;
}
int MultiBodyTree::MultiBodyImpl::getBodyLinearAcceleration(int body_index,
vec3 *world_acceleration) const {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
const RigidBody &body = m_body_list[body_index];
*world_acceleration = body.m_body_T_world.transpose() * body.m_body_acc;
return 0;
}
int MultiBodyTree::MultiBodyImpl::getJointType(const int body_index, JointType *joint_type) const {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
*joint_type = m_body_list[body_index].m_joint_type;
return 0;
}
int MultiBodyTree::MultiBodyImpl::getJointTypeStr(const int body_index,
const char **joint_type) const {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
*joint_type = jointTypeToString(m_body_list[body_index].m_joint_type);
return 0;
}
int MultiBodyTree::MultiBodyImpl::getParentRParentBodyRef(const int body_index, vec3* r) const{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
*r=m_body_list[body_index].m_parent_pos_parent_body_ref;
return 0;
}
int MultiBodyTree::MultiBodyImpl::getBodyTParentRef(const int body_index, mat33* T) const{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
*T=m_body_list[body_index].m_body_T_parent_ref;
return 0;
}
int MultiBodyTree::MultiBodyImpl::getBodyAxisOfMotion(const int body_index, vec3* axis) const{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
if(m_body_list[body_index].m_joint_type == REVOLUTE) {
*axis = m_body_list[body_index].m_Jac_JR;
return 0;
}
if(m_body_list[body_index].m_joint_type == PRISMATIC) {
*axis = m_body_list[body_index].m_Jac_JT;
return 0;
}
setZero(*axis);
return 0;
}
int MultiBodyTree::MultiBodyImpl::getDoFOffset(const int body_index, int *q_index) const {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
*q_index = m_body_list[body_index].m_q_index;
return 0;
}
int MultiBodyTree::MultiBodyImpl::setBodyMass(const int body_index, const idScalar mass) {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
m_body_list[body_index].m_mass = mass;
return 0;
}
int MultiBodyTree::MultiBodyImpl::setBodyFirstMassMoment(const int body_index,
const vec3& first_mass_moment) {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
m_body_list[body_index].m_body_mass_com = first_mass_moment;
return 0;
}
int MultiBodyTree::MultiBodyImpl::setBodySecondMassMoment(const int body_index,
const mat33& second_mass_moment) {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
m_body_list[body_index].m_body_I_body = second_mass_moment;
return 0;
}
int MultiBodyTree::MultiBodyImpl::getBodyMass(const int body_index, idScalar *mass) const {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
*mass = m_body_list[body_index].m_mass;
return 0;
}
int MultiBodyTree::MultiBodyImpl::getBodyFirstMassMoment(const int body_index,
vec3 *first_mass_moment) const {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
*first_mass_moment = m_body_list[body_index].m_body_mass_com;
return 0;
}
int MultiBodyTree::MultiBodyImpl::getBodySecondMassMoment(const int body_index,
mat33 *second_mass_moment) const {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
*second_mass_moment = m_body_list[body_index].m_body_I_body;
return 0;
}
void MultiBodyTree::MultiBodyImpl::clearAllUserForcesAndMoments() {
for (int index = 0; index < m_num_bodies; index++) {
RigidBody &body = m_body_list[index];
setZero(body.m_body_force_user);
setZero(body.m_body_moment_user);
}
}
int MultiBodyTree::MultiBodyImpl::addUserForce(const int body_index, const vec3 &body_force) {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
m_body_list[body_index].m_body_force_user += body_force;
return 0;
}
int MultiBodyTree::MultiBodyImpl::addUserMoment(const int body_index, const vec3 &body_moment) {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
m_body_list[body_index].m_body_moment_user += body_moment;
return 0;
}
#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
int MultiBodyTree::MultiBodyImpl::getBodyDotJacobianTransU(const int body_index, vec3* world_dot_jac_trans_u) const {
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
const RigidBody &body = m_body_list[body_index];
*world_dot_jac_trans_u = body.m_body_T_world.transpose() * body.m_body_dot_Jac_T_u;
return 0;
}
int MultiBodyTree::MultiBodyImpl::getBodyDotJacobianRotU(const int body_index, vec3* world_dot_jac_rot_u) const{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
const RigidBody &body = m_body_list[body_index];
*world_dot_jac_rot_u = body.m_body_T_world.transpose() * body.m_body_dot_Jac_R_u;
return 0;
}
int MultiBodyTree::MultiBodyImpl::getBodyJacobianTrans(const int body_index, mat3x* world_jac_trans) const{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
const RigidBody &body = m_body_list[body_index];
mul(body.m_body_T_world.transpose(), body.m_body_Jac_T, world_jac_trans);
return 0;
}
int MultiBodyTree::MultiBodyImpl::getBodyJacobianRot(const int body_index, mat3x* world_jac_rot) const{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
const RigidBody &body = m_body_list[body_index];
mul(body.m_body_T_world.transpose(), body.m_body_Jac_R,world_jac_rot);
return 0;
}
#endif
}
|