1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
|
#ifndef GIM_BOX_SET_H_INCLUDED
#define GIM_BOX_SET_H_INCLUDED
/*! \file gim_box_set.h
\author Francisco Leon Najera
*/
/*
-----------------------------------------------------------------------------
This source file is part of GIMPACT Library.
For the latest info, see http://gimpact.sourceforge.net/
Copyright (c) 2006 Francisco Leon Najera. C.C. 80087371.
email: projectileman@yahoo.com
This library is free software; you can redistribute it and/or
modify it under the terms of EITHER:
(1) The GNU Lesser General Public License as published by the Free
Software Foundation; either version 2.1 of the License, or (at
your option) any later version. The text of the GNU Lesser
General Public License is included with this library in the
file GIMPACT-LICENSE-LGPL.TXT.
(2) The BSD-style license that is included with this library in
the file GIMPACT-LICENSE-BSD.TXT.
(3) The zlib/libpng license that is included with this library in
the file GIMPACT-LICENSE-ZLIB.TXT.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
GIMPACT-LICENSE-LGPL.TXT, GIMPACT-LICENSE-ZLIB.TXT and GIMPACT-LICENSE-BSD.TXT for more details.
-----------------------------------------------------------------------------
*/
#include "gim_array.h"
#include "gim_radixsort.h"
#include "gim_box_collision.h"
#include "gim_tri_collision.h"
//! Overlapping pair
struct GIM_PAIR
{
GUINT m_index1;
GUINT m_index2;
GIM_PAIR()
{}
GIM_PAIR(const GIM_PAIR & p)
{
m_index1 = p.m_index1;
m_index2 = p.m_index2;
}
GIM_PAIR(GUINT index1, GUINT index2)
{
m_index1 = index1;
m_index2 = index2;
}
};
//! A pairset array
class gim_pair_set: public gim_array<GIM_PAIR>
{
public:
gim_pair_set():gim_array<GIM_PAIR>(32)
{
}
inline void push_pair(GUINT index1,GUINT index2)
{
push_back(GIM_PAIR(index1,index2));
}
inline void push_pair_inv(GUINT index1,GUINT index2)
{
push_back(GIM_PAIR(index2,index1));
}
};
//! Prototype Base class for primitive classification
/*!
This class is a wrapper for primitive collections.
This tells relevant info for the Bounding Box set classes, which take care of space classification.
This class can manage Compound shapes and trimeshes, and if it is managing trimesh then the Hierarchy Bounding Box classes will take advantage of primitive Vs Box overlapping tests for getting optimal results and less Per Box compairisons.
*/
class GIM_PRIMITIVE_MANAGER_PROTOTYPE
{
public:
virtual ~GIM_PRIMITIVE_MANAGER_PROTOTYPE() {}
//! determines if this manager consist on only triangles, which special case will be optimized
virtual bool is_trimesh() = 0;
virtual GUINT get_primitive_count() = 0;
virtual void get_primitive_box(GUINT prim_index ,GIM_AABB & primbox) = 0;
virtual void get_primitive_triangle(GUINT prim_index,GIM_TRIANGLE & triangle) = 0;
};
struct GIM_AABB_DATA
{
GIM_AABB m_bound;
GUINT m_data;
};
//! Node Structure for trees
struct GIM_BOX_TREE_NODE
{
GIM_AABB m_bound;
GUINT m_left;//!< Left subtree
GUINT m_right;//!< Right subtree
GUINT m_escapeIndex;//!< Scape index for traversing
GUINT m_data;//!< primitive index if apply
GIM_BOX_TREE_NODE()
{
m_left = 0;
m_right = 0;
m_escapeIndex = 0;
m_data = 0;
}
SIMD_FORCE_INLINE bool is_leaf_node() const
{
return (!m_left && !m_right);
}
};
//! Basic Box tree structure
class GIM_BOX_TREE
{
protected:
GUINT m_num_nodes;
gim_array<GIM_BOX_TREE_NODE> m_node_array;
protected:
GUINT _sort_and_calc_splitting_index(
gim_array<GIM_AABB_DATA> & primitive_boxes,
GUINT startIndex, GUINT endIndex, GUINT splitAxis);
GUINT _calc_splitting_axis(gim_array<GIM_AABB_DATA> & primitive_boxes, GUINT startIndex, GUINT endIndex);
void _build_sub_tree(gim_array<GIM_AABB_DATA> & primitive_boxes, GUINT startIndex, GUINT endIndex);
public:
GIM_BOX_TREE()
{
m_num_nodes = 0;
}
//! prototype functions for box tree management
//!@{
void build_tree(gim_array<GIM_AABB_DATA> & primitive_boxes);
SIMD_FORCE_INLINE void clearNodes()
{
m_node_array.clear();
m_num_nodes = 0;
}
//! node count
SIMD_FORCE_INLINE GUINT getNodeCount() const
{
return m_num_nodes;
}
//! tells if the node is a leaf
SIMD_FORCE_INLINE bool isLeafNode(GUINT nodeindex) const
{
return m_node_array[nodeindex].is_leaf_node();
}
SIMD_FORCE_INLINE GUINT getNodeData(GUINT nodeindex) const
{
return m_node_array[nodeindex].m_data;
}
SIMD_FORCE_INLINE void getNodeBound(GUINT nodeindex, GIM_AABB & bound) const
{
bound = m_node_array[nodeindex].m_bound;
}
SIMD_FORCE_INLINE void setNodeBound(GUINT nodeindex, const GIM_AABB & bound)
{
m_node_array[nodeindex].m_bound = bound;
}
SIMD_FORCE_INLINE GUINT getLeftNodeIndex(GUINT nodeindex) const
{
return m_node_array[nodeindex].m_left;
}
SIMD_FORCE_INLINE GUINT getRightNodeIndex(GUINT nodeindex) const
{
return m_node_array[nodeindex].m_right;
}
SIMD_FORCE_INLINE GUINT getScapeNodeIndex(GUINT nodeindex) const
{
return m_node_array[nodeindex].m_escapeIndex;
}
//!@}
};
//! Generic Box Tree Template
/*!
This class offers an structure for managing a box tree of primitives.
Requires a Primitive prototype (like GIM_PRIMITIVE_MANAGER_PROTOTYPE ) and
a Box tree structure ( like GIM_BOX_TREE).
*/
template<typename _GIM_PRIMITIVE_MANAGER_PROTOTYPE, typename _GIM_BOX_TREE_PROTOTYPE>
class GIM_BOX_TREE_TEMPLATE_SET
{
protected:
_GIM_PRIMITIVE_MANAGER_PROTOTYPE m_primitive_manager;
_GIM_BOX_TREE_PROTOTYPE m_box_tree;
protected:
//stackless refit
SIMD_FORCE_INLINE void refit()
{
GUINT nodecount = getNodeCount();
while(nodecount--)
{
if(isLeafNode(nodecount))
{
GIM_AABB leafbox;
m_primitive_manager.get_primitive_box(getNodeData(nodecount),leafbox);
setNodeBound(nodecount,leafbox);
}
else
{
//get left bound
GUINT childindex = getLeftNodeIndex(nodecount);
GIM_AABB bound;
getNodeBound(childindex,bound);
//get right bound
childindex = getRightNodeIndex(nodecount);
GIM_AABB bound2;
getNodeBound(childindex,bound2);
bound.merge(bound2);
setNodeBound(nodecount,bound);
}
}
}
public:
GIM_BOX_TREE_TEMPLATE_SET()
{
}
SIMD_FORCE_INLINE GIM_AABB getGlobalBox() const
{
GIM_AABB totalbox;
getNodeBound(0, totalbox);
return totalbox;
}
SIMD_FORCE_INLINE void setPrimitiveManager(const _GIM_PRIMITIVE_MANAGER_PROTOTYPE & primitive_manager)
{
m_primitive_manager = primitive_manager;
}
const _GIM_PRIMITIVE_MANAGER_PROTOTYPE & getPrimitiveManager() const
{
return m_primitive_manager;
}
_GIM_PRIMITIVE_MANAGER_PROTOTYPE & getPrimitiveManager()
{
return m_primitive_manager;
}
//! node manager prototype functions
///@{
//! this attemps to refit the box set.
SIMD_FORCE_INLINE void update()
{
refit();
}
//! this rebuild the entire set
SIMD_FORCE_INLINE void buildSet()
{
//obtain primitive boxes
gim_array<GIM_AABB_DATA> primitive_boxes;
primitive_boxes.resize(m_primitive_manager.get_primitive_count(),false);
for (GUINT i = 0;i<primitive_boxes.size() ;i++ )
{
m_primitive_manager.get_primitive_box(i,primitive_boxes[i].m_bound);
primitive_boxes[i].m_data = i;
}
m_box_tree.build_tree(primitive_boxes);
}
//! returns the indices of the primitives in the m_primitive_manager
SIMD_FORCE_INLINE bool boxQuery(const GIM_AABB & box, gim_array<GUINT> & collided_results) const
{
GUINT curIndex = 0;
GUINT numNodes = getNodeCount();
while (curIndex < numNodes)
{
GIM_AABB bound;
getNodeBound(curIndex,bound);
//catch bugs in tree data
bool aabbOverlap = bound.has_collision(box);
bool isleafnode = isLeafNode(curIndex);
if (isleafnode && aabbOverlap)
{
collided_results.push_back(getNodeData(curIndex));
}
if (aabbOverlap || isleafnode)
{
//next subnode
curIndex++;
}
else
{
//skip node
curIndex+= getScapeNodeIndex(curIndex);
}
}
if(collided_results.size()>0) return true;
return false;
}
//! returns the indices of the primitives in the m_primitive_manager
SIMD_FORCE_INLINE bool boxQueryTrans(const GIM_AABB & box,
const btTransform & transform, gim_array<GUINT> & collided_results) const
{
GIM_AABB transbox=box;
transbox.appy_transform(transform);
return boxQuery(transbox,collided_results);
}
//! returns the indices of the primitives in the m_primitive_manager
SIMD_FORCE_INLINE bool rayQuery(
const btVector3 & ray_dir,const btVector3 & ray_origin ,
gim_array<GUINT> & collided_results) const
{
GUINT curIndex = 0;
GUINT numNodes = getNodeCount();
while (curIndex < numNodes)
{
GIM_AABB bound;
getNodeBound(curIndex,bound);
//catch bugs in tree data
bool aabbOverlap = bound.collide_ray(ray_origin,ray_dir);
bool isleafnode = isLeafNode(curIndex);
if (isleafnode && aabbOverlap)
{
collided_results.push_back(getNodeData( curIndex));
}
if (aabbOverlap || isleafnode)
{
//next subnode
curIndex++;
}
else
{
//skip node
curIndex+= getScapeNodeIndex(curIndex);
}
}
if(collided_results.size()>0) return true;
return false;
}
//! tells if this set has hierarcht
SIMD_FORCE_INLINE bool hasHierarchy() const
{
return true;
}
//! tells if this set is a trimesh
SIMD_FORCE_INLINE bool isTrimesh() const
{
return m_primitive_manager.is_trimesh();
}
//! node count
SIMD_FORCE_INLINE GUINT getNodeCount() const
{
return m_box_tree.getNodeCount();
}
//! tells if the node is a leaf
SIMD_FORCE_INLINE bool isLeafNode(GUINT nodeindex) const
{
return m_box_tree.isLeafNode(nodeindex);
}
SIMD_FORCE_INLINE GUINT getNodeData(GUINT nodeindex) const
{
return m_box_tree.getNodeData(nodeindex);
}
SIMD_FORCE_INLINE void getNodeBound(GUINT nodeindex, GIM_AABB & bound) const
{
m_box_tree.getNodeBound(nodeindex, bound);
}
SIMD_FORCE_INLINE void setNodeBound(GUINT nodeindex, const GIM_AABB & bound)
{
m_box_tree.setNodeBound(nodeindex, bound);
}
SIMD_FORCE_INLINE GUINT getLeftNodeIndex(GUINT nodeindex) const
{
return m_box_tree.getLeftNodeIndex(nodeindex);
}
SIMD_FORCE_INLINE GUINT getRightNodeIndex(GUINT nodeindex) const
{
return m_box_tree.getRightNodeIndex(nodeindex);
}
SIMD_FORCE_INLINE GUINT getScapeNodeIndex(GUINT nodeindex) const
{
return m_box_tree.getScapeNodeIndex(nodeindex);
}
SIMD_FORCE_INLINE void getNodeTriangle(GUINT nodeindex,GIM_TRIANGLE & triangle) const
{
m_primitive_manager.get_primitive_triangle(getNodeData(nodeindex),triangle);
}
};
//! Class for Box Tree Sets
/*!
this has the GIM_BOX_TREE implementation for bounding boxes.
*/
template<typename _GIM_PRIMITIVE_MANAGER_PROTOTYPE>
class GIM_BOX_TREE_SET: public GIM_BOX_TREE_TEMPLATE_SET< _GIM_PRIMITIVE_MANAGER_PROTOTYPE, GIM_BOX_TREE>
{
public:
};
/// GIM_BOX_SET collision methods
template<typename BOX_SET_CLASS0,typename BOX_SET_CLASS1>
class GIM_TREE_TREE_COLLIDER
{
public:
gim_pair_set * m_collision_pairs;
BOX_SET_CLASS0 * m_boxset0;
BOX_SET_CLASS1 * m_boxset1;
GUINT current_node0;
GUINT current_node1;
bool node0_is_leaf;
bool node1_is_leaf;
bool t0_is_trimesh;
bool t1_is_trimesh;
bool node0_has_triangle;
bool node1_has_triangle;
GIM_AABB m_box0;
GIM_AABB m_box1;
GIM_BOX_BOX_TRANSFORM_CACHE trans_cache_1to0;
btTransform trans_cache_0to1;
GIM_TRIANGLE m_tri0;
btVector4 m_tri0_plane;
GIM_TRIANGLE m_tri1;
btVector4 m_tri1_plane;
public:
GIM_TREE_TREE_COLLIDER()
{
current_node0 = G_UINT_INFINITY;
current_node1 = G_UINT_INFINITY;
}
protected:
SIMD_FORCE_INLINE void retrieve_node0_triangle(GUINT node0)
{
if(node0_has_triangle) return;
m_boxset0->getNodeTriangle(node0,m_tri0);
//transform triangle
m_tri0.m_vertices[0] = trans_cache_0to1(m_tri0.m_vertices[0]);
m_tri0.m_vertices[1] = trans_cache_0to1(m_tri0.m_vertices[1]);
m_tri0.m_vertices[2] = trans_cache_0to1(m_tri0.m_vertices[2]);
m_tri0.get_plane(m_tri0_plane);
node0_has_triangle = true;
}
SIMD_FORCE_INLINE void retrieve_node1_triangle(GUINT node1)
{
if(node1_has_triangle) return;
m_boxset1->getNodeTriangle(node1,m_tri1);
//transform triangle
m_tri1.m_vertices[0] = trans_cache_1to0.transform(m_tri1.m_vertices[0]);
m_tri1.m_vertices[1] = trans_cache_1to0.transform(m_tri1.m_vertices[1]);
m_tri1.m_vertices[2] = trans_cache_1to0.transform(m_tri1.m_vertices[2]);
m_tri1.get_plane(m_tri1_plane);
node1_has_triangle = true;
}
SIMD_FORCE_INLINE void retrieve_node0_info(GUINT node0)
{
if(node0 == current_node0) return;
m_boxset0->getNodeBound(node0,m_box0);
node0_is_leaf = m_boxset0->isLeafNode(node0);
node0_has_triangle = false;
current_node0 = node0;
}
SIMD_FORCE_INLINE void retrieve_node1_info(GUINT node1)
{
if(node1 == current_node1) return;
m_boxset1->getNodeBound(node1,m_box1);
node1_is_leaf = m_boxset1->isLeafNode(node1);
node1_has_triangle = false;
current_node1 = node1;
}
SIMD_FORCE_INLINE bool node_collision(GUINT node0 ,GUINT node1)
{
retrieve_node0_info(node0);
retrieve_node1_info(node1);
bool result = m_box0.overlapping_trans_cache(m_box1,trans_cache_1to0,true);
if(!result) return false;
if(t0_is_trimesh && node0_is_leaf)
{
//perform primitive vs box collision
retrieve_node0_triangle(node0);
//do triangle vs box collision
m_box1.increment_margin(m_tri0.m_margin);
result = m_box1.collide_triangle_exact(
m_tri0.m_vertices[0],m_tri0.m_vertices[1],m_tri0.m_vertices[2],m_tri0_plane);
m_box1.increment_margin(-m_tri0.m_margin);
if(!result) return false;
return true;
}
else if(t1_is_trimesh && node1_is_leaf)
{
//perform primitive vs box collision
retrieve_node1_triangle(node1);
//do triangle vs box collision
m_box0.increment_margin(m_tri1.m_margin);
result = m_box0.collide_triangle_exact(
m_tri1.m_vertices[0],m_tri1.m_vertices[1],m_tri1.m_vertices[2],m_tri1_plane);
m_box0.increment_margin(-m_tri1.m_margin);
if(!result) return false;
return true;
}
return true;
}
//stackless collision routine
void find_collision_pairs()
{
gim_pair_set stack_collisions;
stack_collisions.reserve(32);
//add the first pair
stack_collisions.push_pair(0,0);
while(stack_collisions.size())
{
//retrieve the last pair and pop
GUINT node0 = stack_collisions.back().m_index1;
GUINT node1 = stack_collisions.back().m_index2;
stack_collisions.pop_back();
if(node_collision(node0,node1)) // a collision is found
{
if(node0_is_leaf)
{
if(node1_is_leaf)
{
m_collision_pairs->push_pair(m_boxset0->getNodeData(node0),m_boxset1->getNodeData(node1));
}
else
{
//collide left
stack_collisions.push_pair(node0,m_boxset1->getLeftNodeIndex(node1));
//collide right
stack_collisions.push_pair(node0,m_boxset1->getRightNodeIndex(node1));
}
}
else
{
if(node1_is_leaf)
{
//collide left
stack_collisions.push_pair(m_boxset0->getLeftNodeIndex(node0),node1);
//collide right
stack_collisions.push_pair(m_boxset0->getRightNodeIndex(node0),node1);
}
else
{
GUINT left0 = m_boxset0->getLeftNodeIndex(node0);
GUINT right0 = m_boxset0->getRightNodeIndex(node0);
GUINT left1 = m_boxset1->getLeftNodeIndex(node1);
GUINT right1 = m_boxset1->getRightNodeIndex(node1);
//collide left
stack_collisions.push_pair(left0,left1);
//collide right
stack_collisions.push_pair(left0,right1);
//collide left
stack_collisions.push_pair(right0,left1);
//collide right
stack_collisions.push_pair(right0,right1);
}// else if node1 is not a leaf
}// else if node0 is not a leaf
}// if(node_collision(node0,node1))
}//while(stack_collisions.size())
}
public:
void find_collision(BOX_SET_CLASS0 * boxset1, const btTransform & trans1,
BOX_SET_CLASS1 * boxset2, const btTransform & trans2,
gim_pair_set & collision_pairs, bool complete_primitive_tests = true)
{
m_collision_pairs = &collision_pairs;
m_boxset0 = boxset1;
m_boxset1 = boxset2;
trans_cache_1to0.calc_from_homogenic(trans1,trans2);
trans_cache_0to1 = trans2.inverse();
trans_cache_0to1 *= trans1;
if(complete_primitive_tests)
{
t0_is_trimesh = boxset1->getPrimitiveManager().is_trimesh();
t1_is_trimesh = boxset2->getPrimitiveManager().is_trimesh();
}
else
{
t0_is_trimesh = false;
t1_is_trimesh = false;
}
find_collision_pairs();
}
};
#endif // GIM_BOXPRUNING_H_INCLUDED
|