summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/src/BulletCollision/CollisionShapes/btOptimizedBvh.cpp
blob: 6f36775f7c9a56a6e5a77be25538513d177418b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2009 Erwin Coumans  http://bulletphysics.org

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/


#include "btOptimizedBvh.h"
#include "btStridingMeshInterface.h"
#include "LinearMath/btAabbUtil2.h"
#include "LinearMath/btIDebugDraw.h"


btOptimizedBvh::btOptimizedBvh()
{ 
}

btOptimizedBvh::~btOptimizedBvh()
{
}


void btOptimizedBvh::build(btStridingMeshInterface* triangles, bool useQuantizedAabbCompression, const btVector3& bvhAabbMin, const btVector3& bvhAabbMax)
{
	m_useQuantization = useQuantizedAabbCompression;


	// NodeArray	triangleNodes;

	struct	NodeTriangleCallback : public btInternalTriangleIndexCallback
	{

		NodeArray&	m_triangleNodes;

		NodeTriangleCallback& operator=(NodeTriangleCallback& other)
		{
			m_triangleNodes.copyFromArray(other.m_triangleNodes);
			return *this;
		}
		
		NodeTriangleCallback(NodeArray&	triangleNodes)
			:m_triangleNodes(triangleNodes)
		{
		}

		virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int  triangleIndex)
		{
			btOptimizedBvhNode node;
			btVector3	aabbMin,aabbMax;
			aabbMin.setValue(btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT));
			aabbMax.setValue(btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT)); 
			aabbMin.setMin(triangle[0]);
			aabbMax.setMax(triangle[0]);
			aabbMin.setMin(triangle[1]);
			aabbMax.setMax(triangle[1]);
			aabbMin.setMin(triangle[2]);
			aabbMax.setMax(triangle[2]);

			//with quantization?
			node.m_aabbMinOrg = aabbMin;
			node.m_aabbMaxOrg = aabbMax;

			node.m_escapeIndex = -1;
	
			//for child nodes
			node.m_subPart = partId;
			node.m_triangleIndex = triangleIndex;
			m_triangleNodes.push_back(node);
		}
	};
	struct	QuantizedNodeTriangleCallback : public btInternalTriangleIndexCallback
	{
		QuantizedNodeArray&	m_triangleNodes;
		const btQuantizedBvh* m_optimizedTree; // for quantization

		QuantizedNodeTriangleCallback& operator=(QuantizedNodeTriangleCallback& other)
		{
			m_triangleNodes.copyFromArray(other.m_triangleNodes);
			m_optimizedTree = other.m_optimizedTree;
			return *this;
		}

		QuantizedNodeTriangleCallback(QuantizedNodeArray&	triangleNodes,const btQuantizedBvh* tree)
			:m_triangleNodes(triangleNodes),m_optimizedTree(tree)
		{
		}

		virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int  triangleIndex)
		{
			// The partId and triangle index must fit in the same (positive) integer
			btAssert(partId < (1<<MAX_NUM_PARTS_IN_BITS));
			btAssert(triangleIndex < (1<<(31-MAX_NUM_PARTS_IN_BITS)));
			//negative indices are reserved for escapeIndex
			btAssert(triangleIndex>=0);

			btQuantizedBvhNode node;
			btVector3	aabbMin,aabbMax;
			aabbMin.setValue(btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT));
			aabbMax.setValue(btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT)); 
			aabbMin.setMin(triangle[0]);
			aabbMax.setMax(triangle[0]);
			aabbMin.setMin(triangle[1]);
			aabbMax.setMax(triangle[1]);
			aabbMin.setMin(triangle[2]);
			aabbMax.setMax(triangle[2]);

			//PCK: add these checks for zero dimensions of aabb
			const btScalar MIN_AABB_DIMENSION = btScalar(0.002);
			const btScalar MIN_AABB_HALF_DIMENSION = btScalar(0.001);
			if (aabbMax.x() - aabbMin.x() < MIN_AABB_DIMENSION)
			{
				aabbMax.setX(aabbMax.x() + MIN_AABB_HALF_DIMENSION);
				aabbMin.setX(aabbMin.x() - MIN_AABB_HALF_DIMENSION);
			}
			if (aabbMax.y() - aabbMin.y() < MIN_AABB_DIMENSION)
			{
				aabbMax.setY(aabbMax.y() + MIN_AABB_HALF_DIMENSION);
				aabbMin.setY(aabbMin.y() - MIN_AABB_HALF_DIMENSION);
			}
			if (aabbMax.z() - aabbMin.z() < MIN_AABB_DIMENSION)
			{
				aabbMax.setZ(aabbMax.z() + MIN_AABB_HALF_DIMENSION);
				aabbMin.setZ(aabbMin.z() - MIN_AABB_HALF_DIMENSION);
			}

			m_optimizedTree->quantize(&node.m_quantizedAabbMin[0],aabbMin,0);
			m_optimizedTree->quantize(&node.m_quantizedAabbMax[0],aabbMax,1);

			node.m_escapeIndexOrTriangleIndex = (partId<<(31-MAX_NUM_PARTS_IN_BITS)) | triangleIndex;

			m_triangleNodes.push_back(node);
		}
	};
	


	int numLeafNodes = 0;

	
	if (m_useQuantization)
	{

		//initialize quantization values
		setQuantizationValues(bvhAabbMin,bvhAabbMax);

		QuantizedNodeTriangleCallback	callback(m_quantizedLeafNodes,this);

	
		triangles->InternalProcessAllTriangles(&callback,m_bvhAabbMin,m_bvhAabbMax);

		//now we have an array of leafnodes in m_leafNodes
		numLeafNodes = m_quantizedLeafNodes.size();


		m_quantizedContiguousNodes.resize(2*numLeafNodes);


	} else
	{
		NodeTriangleCallback	callback(m_leafNodes);

		btVector3 aabbMin(btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT));
		btVector3 aabbMax(btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT));

		triangles->InternalProcessAllTriangles(&callback,aabbMin,aabbMax);

		//now we have an array of leafnodes in m_leafNodes
		numLeafNodes = m_leafNodes.size();

		m_contiguousNodes.resize(2*numLeafNodes);
	}

	m_curNodeIndex = 0;

	buildTree(0,numLeafNodes);

	///if the entire tree is small then subtree size, we need to create a header info for the tree
	if(m_useQuantization && !m_SubtreeHeaders.size())
	{
		btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand();
		subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[0]);
		subtree.m_rootNodeIndex = 0;
		subtree.m_subtreeSize = m_quantizedContiguousNodes[0].isLeafNode() ? 1 : m_quantizedContiguousNodes[0].getEscapeIndex();
	}

	//PCK: update the copy of the size
	m_subtreeHeaderCount = m_SubtreeHeaders.size();

	//PCK: clear m_quantizedLeafNodes and m_leafNodes, they are temporary
	m_quantizedLeafNodes.clear();
	m_leafNodes.clear();
}




void	btOptimizedBvh::refit(btStridingMeshInterface* meshInterface,const btVector3& aabbMin,const btVector3& aabbMax)
{
	if (m_useQuantization)
	{

		setQuantizationValues(aabbMin,aabbMax);

		updateBvhNodes(meshInterface,0,m_curNodeIndex,0);

		///now update all subtree headers

		int i;
		for (i=0;i<m_SubtreeHeaders.size();i++)
		{
			btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i];
			subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[subtree.m_rootNodeIndex]);
		}

	} else
	{

	}
}




void	btOptimizedBvh::refitPartial(btStridingMeshInterface* meshInterface,const btVector3& aabbMin,const btVector3& aabbMax)
{
	//incrementally initialize quantization values
	btAssert(m_useQuantization);

	btAssert(aabbMin.getX() > m_bvhAabbMin.getX());
	btAssert(aabbMin.getY() > m_bvhAabbMin.getY());
	btAssert(aabbMin.getZ() > m_bvhAabbMin.getZ());

	btAssert(aabbMax.getX() < m_bvhAabbMax.getX());
	btAssert(aabbMax.getY() < m_bvhAabbMax.getY());
	btAssert(aabbMax.getZ() < m_bvhAabbMax.getZ());

	///we should update all quantization values, using updateBvhNodes(meshInterface);
	///but we only update chunks that overlap the given aabb
	
	unsigned short	quantizedQueryAabbMin[3];
	unsigned short	quantizedQueryAabbMax[3];

	quantize(&quantizedQueryAabbMin[0],aabbMin,0);
	quantize(&quantizedQueryAabbMax[0],aabbMax,1);

	int i;
	for (i=0;i<this->m_SubtreeHeaders.size();i++)
	{
		btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i];

		//PCK: unsigned instead of bool
		unsigned overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);
		if (overlap != 0)
		{
			updateBvhNodes(meshInterface,subtree.m_rootNodeIndex,subtree.m_rootNodeIndex+subtree.m_subtreeSize,i);

			subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[subtree.m_rootNodeIndex]);
		}
	}
	
}

void	btOptimizedBvh::updateBvhNodes(btStridingMeshInterface* meshInterface,int firstNode,int endNode,int index)
{
	(void)index;

	btAssert(m_useQuantization);

	int curNodeSubPart=-1;

	//get access info to trianglemesh data
		const unsigned char *vertexbase = 0;
		int numverts = 0;
		PHY_ScalarType type = PHY_INTEGER;
		int stride = 0;
		const unsigned char *indexbase = 0;
		int indexstride = 0;
		int numfaces = 0;
		PHY_ScalarType indicestype = PHY_INTEGER;

		btVector3	triangleVerts[3];
		btVector3	aabbMin,aabbMax;
		const btVector3& meshScaling = meshInterface->getScaling();
		
		int i;
		for (i=endNode-1;i>=firstNode;i--)
		{


			btQuantizedBvhNode& curNode = m_quantizedContiguousNodes[i];
			if (curNode.isLeafNode())
			{
				//recalc aabb from triangle data
				int nodeSubPart = curNode.getPartId();
				int nodeTriangleIndex = curNode.getTriangleIndex();
				if (nodeSubPart != curNodeSubPart)
				{
					if (curNodeSubPart >= 0)
						meshInterface->unLockReadOnlyVertexBase(curNodeSubPart);
					meshInterface->getLockedReadOnlyVertexIndexBase(&vertexbase,numverts,	type,stride,&indexbase,indexstride,numfaces,indicestype,nodeSubPart);

					curNodeSubPart = nodeSubPart;
					btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT);
				}
				//triangles->getLockedReadOnlyVertexIndexBase(vertexBase,numVerts,

				unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride);
				
				
				for (int j=2;j>=0;j--)
				{
					
					int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
					if (type == PHY_FLOAT)
					{
						float* graphicsbase = (float*)(vertexbase+graphicsindex*stride);
						triangleVerts[j] = btVector3(
							graphicsbase[0]*meshScaling.getX(),
							graphicsbase[1]*meshScaling.getY(),
							graphicsbase[2]*meshScaling.getZ());
					}
					else
					{
						double* graphicsbase = (double*)(vertexbase+graphicsindex*stride);
						triangleVerts[j] = btVector3( btScalar(graphicsbase[0]*meshScaling.getX()), btScalar(graphicsbase[1]*meshScaling.getY()), btScalar(graphicsbase[2]*meshScaling.getZ()));
					}
				}


				
				aabbMin.setValue(btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT));
				aabbMax.setValue(btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT)); 
				aabbMin.setMin(triangleVerts[0]);
				aabbMax.setMax(triangleVerts[0]);
				aabbMin.setMin(triangleVerts[1]);
				aabbMax.setMax(triangleVerts[1]);
				aabbMin.setMin(triangleVerts[2]);
				aabbMax.setMax(triangleVerts[2]);

				quantize(&curNode.m_quantizedAabbMin[0],aabbMin,0);
				quantize(&curNode.m_quantizedAabbMax[0],aabbMax,1);
				
			} else
			{
				//combine aabb from both children

				btQuantizedBvhNode* leftChildNode = &m_quantizedContiguousNodes[i+1];
				
				btQuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? &m_quantizedContiguousNodes[i+2] :
					&m_quantizedContiguousNodes[i+1+leftChildNode->getEscapeIndex()];
				

				{
					for (int i=0;i<3;i++)
					{
						curNode.m_quantizedAabbMin[i] = leftChildNode->m_quantizedAabbMin[i];
						if (curNode.m_quantizedAabbMin[i]>rightChildNode->m_quantizedAabbMin[i])
							curNode.m_quantizedAabbMin[i]=rightChildNode->m_quantizedAabbMin[i];

						curNode.m_quantizedAabbMax[i] = leftChildNode->m_quantizedAabbMax[i];
						if (curNode.m_quantizedAabbMax[i] < rightChildNode->m_quantizedAabbMax[i])
							curNode.m_quantizedAabbMax[i] = rightChildNode->m_quantizedAabbMax[i];
					}
				}
			}

		}

		if (curNodeSubPart >= 0)
			meshInterface->unLockReadOnlyVertexBase(curNodeSubPart);

		
}

///deSerializeInPlace loads and initializes a BVH from a buffer in memory 'in place'
btOptimizedBvh* btOptimizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian)
{
	btQuantizedBvh* bvh = btQuantizedBvh::deSerializeInPlace(i_alignedDataBuffer,i_dataBufferSize,i_swapEndian);
	
	//we don't add additional data so just do a static upcast
	return static_cast<btOptimizedBvh*>(bvh);
}