1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btCapsuleShape.h"
#include "LinearMath/btQuaternion.h"
btCapsuleShape::btCapsuleShape(btScalar radius, btScalar height) : btConvexInternalShape ()
{
m_collisionMargin = radius;
m_shapeType = CAPSULE_SHAPE_PROXYTYPE;
m_upAxis = 1;
m_implicitShapeDimensions.setValue(radius,0.5f*height,radius);
}
btVector3 btCapsuleShape::localGetSupportingVertexWithoutMargin(const btVector3& vec0)const
{
btVector3 supVec(0,0,0);
btScalar maxDot(btScalar(-BT_LARGE_FLOAT));
btVector3 vec = vec0;
btScalar lenSqr = vec.length2();
if (lenSqr < btScalar(0.0001))
{
vec.setValue(1,0,0);
} else
{
btScalar rlen = btScalar(1.) / btSqrt(lenSqr );
vec *= rlen;
}
btVector3 vtx;
btScalar newDot;
{
btVector3 pos(0,0,0);
pos[getUpAxis()] = getHalfHeight();
vtx = pos;
newDot = vec.dot(vtx);
if (newDot > maxDot)
{
maxDot = newDot;
supVec = vtx;
}
}
{
btVector3 pos(0,0,0);
pos[getUpAxis()] = -getHalfHeight();
vtx = pos;
newDot = vec.dot(vtx);
if (newDot > maxDot)
{
maxDot = newDot;
supVec = vtx;
}
}
return supVec;
}
void btCapsuleShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
{
for (int j=0;j<numVectors;j++)
{
btScalar maxDot(btScalar(-BT_LARGE_FLOAT));
const btVector3& vec = vectors[j];
btVector3 vtx;
btScalar newDot;
{
btVector3 pos(0,0,0);
pos[getUpAxis()] = getHalfHeight();
vtx = pos;
newDot = vec.dot(vtx);
if (newDot > maxDot)
{
maxDot = newDot;
supportVerticesOut[j] = vtx;
}
}
{
btVector3 pos(0,0,0);
pos[getUpAxis()] = -getHalfHeight();
vtx = pos;
newDot = vec.dot(vtx);
if (newDot > maxDot)
{
maxDot = newDot;
supportVerticesOut[j] = vtx;
}
}
}
}
void btCapsuleShape::calculateLocalInertia(btScalar mass,btVector3& inertia) const
{
//as an approximation, take the inertia of the box that bounds the spheres
btTransform ident;
ident.setIdentity();
btScalar radius = getRadius();
btVector3 halfExtents(radius,radius,radius);
halfExtents[getUpAxis()]+=getHalfHeight();
btScalar lx=btScalar(2.)*(halfExtents[0]);
btScalar ly=btScalar(2.)*(halfExtents[1]);
btScalar lz=btScalar(2.)*(halfExtents[2]);
const btScalar x2 = lx*lx;
const btScalar y2 = ly*ly;
const btScalar z2 = lz*lz;
const btScalar scaledmass = mass * btScalar(.08333333);
inertia[0] = scaledmass * (y2+z2);
inertia[1] = scaledmass * (x2+z2);
inertia[2] = scaledmass * (x2+y2);
}
btCapsuleShapeX::btCapsuleShapeX(btScalar radius,btScalar height)
{
m_collisionMargin = radius;
m_upAxis = 0;
m_implicitShapeDimensions.setValue(0.5f*height, radius,radius);
}
btCapsuleShapeZ::btCapsuleShapeZ(btScalar radius,btScalar height)
{
m_collisionMargin = radius;
m_upAxis = 2;
m_implicitShapeDimensions.setValue(radius,radius,0.5f*height);
}
|