summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/LinearMath/btMatrix3x3.h
blob: 0a08ae409a115e55894ac7149fced575f08b3f0f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#ifndef BT_MATRIX3x3_H
#define BT_MATRIX3x3_H

#include "btVector3.h"
#include "btQuaternion.h"
#include <stdio.h>

#ifdef BT_USE_SSE
//const __m128 ATTRIBUTE_ALIGNED16(v2220) = {2.0f, 2.0f, 2.0f, 0.0f};
//const __m128 ATTRIBUTE_ALIGNED16(vMPPP) = {-0.0f, +0.0f, +0.0f, +0.0f};
#define vMPPP (_mm_set_ps(+0.0f, +0.0f, +0.0f, -0.0f))
#endif

#if defined(BT_USE_SSE)
#define v1000 (_mm_set_ps(0.0f, 0.0f, 0.0f, 1.0f))
#define v0100 (_mm_set_ps(0.0f, 0.0f, 1.0f, 0.0f))
#define v0010 (_mm_set_ps(0.0f, 1.0f, 0.0f, 0.0f))
#elif defined(BT_USE_NEON)
const btSimdFloat4 ATTRIBUTE_ALIGNED16(v1000) = {1.0f, 0.0f, 0.0f, 0.0f};
const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0100) = {0.0f, 1.0f, 0.0f, 0.0f};
const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0010) = {0.0f, 0.0f, 1.0f, 0.0f};
#endif

#ifdef BT_USE_DOUBLE_PRECISION
#define btMatrix3x3Data btMatrix3x3DoubleData
#else
#define btMatrix3x3Data btMatrix3x3FloatData
#endif  //BT_USE_DOUBLE_PRECISION

/**@brief The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with btQuaternion, btTransform and btVector3.
* Make sure to only include a pure orthogonal matrix without scaling. */
ATTRIBUTE_ALIGNED16(class)
btMatrix3x3
{
	///Data storage for the matrix, each vector is a row of the matrix
	btVector3 m_el[3];

public:
	/** @brief No initializaion constructor */
	btMatrix3x3() {}

	//		explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); }

	/**@brief Constructor from Quaternion */
	explicit btMatrix3x3(const btQuaternion& q) { setRotation(q); }
	/*
	template <typename btScalar>
	Matrix3x3(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
	{ 
	setEulerYPR(yaw, pitch, roll);
	}
	*/
	/** @brief Constructor with row major formatting */
	btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz,
				const btScalar& yx, const btScalar& yy, const btScalar& yz,
				const btScalar& zx, const btScalar& zy, const btScalar& zz)
	{
		setValue(xx, xy, xz,
				 yx, yy, yz,
				 zx, zy, zz);
	}

#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
	SIMD_FORCE_INLINE btMatrix3x3(const btSimdFloat4 v0, const btSimdFloat4 v1, const btSimdFloat4 v2)
	{
		m_el[0].mVec128 = v0;
		m_el[1].mVec128 = v1;
		m_el[2].mVec128 = v2;
	}

	SIMD_FORCE_INLINE btMatrix3x3(const btVector3& v0, const btVector3& v1, const btVector3& v2)
	{
		m_el[0] = v0;
		m_el[1] = v1;
		m_el[2] = v2;
	}

	// Copy constructor
	SIMD_FORCE_INLINE btMatrix3x3(const btMatrix3x3& rhs)
	{
		m_el[0].mVec128 = rhs.m_el[0].mVec128;
		m_el[1].mVec128 = rhs.m_el[1].mVec128;
		m_el[2].mVec128 = rhs.m_el[2].mVec128;
	}

	// Assignment Operator
	SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& m)
	{
		m_el[0].mVec128 = m.m_el[0].mVec128;
		m_el[1].mVec128 = m.m_el[1].mVec128;
		m_el[2].mVec128 = m.m_el[2].mVec128;

		return *this;
	}

#else

	/** @brief Copy constructor */
	SIMD_FORCE_INLINE btMatrix3x3(const btMatrix3x3& other)
	{
		m_el[0] = other.m_el[0];
		m_el[1] = other.m_el[1];
		m_el[2] = other.m_el[2];
	}

	/** @brief Assignment Operator */
	SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other)
	{
		m_el[0] = other.m_el[0];
		m_el[1] = other.m_el[1];
		m_el[2] = other.m_el[2];
		return *this;
	}

#endif

	/** @brief Get a column of the matrix as a vector 
	*  @param i Column number 0 indexed */
	SIMD_FORCE_INLINE btVector3 getColumn(int i) const
	{
		return btVector3(m_el[0][i], m_el[1][i], m_el[2][i]);
	}

	/** @brief Get a row of the matrix as a vector 
	*  @param i Row number 0 indexed */
	SIMD_FORCE_INLINE const btVector3& getRow(int i) const
	{
		btFullAssert(0 <= i && i < 3);
		return m_el[i];
	}

	/** @brief Get a mutable reference to a row of the matrix as a vector 
	*  @param i Row number 0 indexed */
	SIMD_FORCE_INLINE btVector3& operator[](int i)
	{
		btFullAssert(0 <= i && i < 3);
		return m_el[i];
	}

	/** @brief Get a const reference to a row of the matrix as a vector 
	*  @param i Row number 0 indexed */
	SIMD_FORCE_INLINE const btVector3& operator[](int i) const
	{
		btFullAssert(0 <= i && i < 3);
		return m_el[i];
	}

	/** @brief Multiply by the target matrix on the right
	*  @param m Rotation matrix to be applied 
	* Equivilant to this = this * m */
	btMatrix3x3& operator*=(const btMatrix3x3& m);

	/** @brief Adds by the target matrix on the right
	*  @param m matrix to be applied 
	* Equivilant to this = this + m */
	btMatrix3x3& operator+=(const btMatrix3x3& m);

	/** @brief Substractss by the target matrix on the right
	*  @param m matrix to be applied 
	* Equivilant to this = this - m */
	btMatrix3x3& operator-=(const btMatrix3x3& m);

	/** @brief Set from the rotational part of a 4x4 OpenGL matrix
	*  @param m A pointer to the beginning of the array of scalars*/
	void setFromOpenGLSubMatrix(const btScalar* m)
	{
		m_el[0].setValue(m[0], m[4], m[8]);
		m_el[1].setValue(m[1], m[5], m[9]);
		m_el[2].setValue(m[2], m[6], m[10]);
	}
	/** @brief Set the values of the matrix explicitly (row major)
	*  @param xx Top left
	*  @param xy Top Middle
	*  @param xz Top Right
	*  @param yx Middle Left
	*  @param yy Middle Middle
	*  @param yz Middle Right
	*  @param zx Bottom Left
	*  @param zy Bottom Middle
	*  @param zz Bottom Right*/
	void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz,
				  const btScalar& yx, const btScalar& yy, const btScalar& yz,
				  const btScalar& zx, const btScalar& zy, const btScalar& zz)
	{
		m_el[0].setValue(xx, xy, xz);
		m_el[1].setValue(yx, yy, yz);
		m_el[2].setValue(zx, zy, zz);
	}

	/** @brief Set the matrix from a quaternion
	*  @param q The Quaternion to match */
	void setRotation(const btQuaternion& q)
	{
		btScalar d = q.length2();
		btFullAssert(d != btScalar(0.0));
		btScalar s = btScalar(2.0) / d;

#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
		__m128 vs, Q = q.get128();
		__m128i Qi = btCastfTo128i(Q);
		__m128 Y, Z;
		__m128 V1, V2, V3;
		__m128 V11, V21, V31;
		__m128 NQ = _mm_xor_ps(Q, btvMzeroMask);
		__m128i NQi = btCastfTo128i(NQ);

		V1 = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(1, 0, 2, 3)));  // Y X Z W
		V2 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(0, 0, 1, 3));                 // -X -X  Y  W
		V3 = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(2, 1, 0, 3)));  // Z Y X W
		V1 = _mm_xor_ps(V1, vMPPP);                                         //	change the sign of the first element

		V11 = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(1, 1, 0, 3)));  // Y Y X W
		V21 = _mm_unpackhi_ps(Q, Q);                                         //  Z  Z  W  W
		V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(0, 2, 0, 3));                 //  X  Z -X -W

		V2 = V2 * V1;   //
		V1 = V1 * V11;  //
		V3 = V3 * V31;  //

		V11 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(2, 3, 1, 3));                //	-Z -W  Y  W
		V11 = V11 * V21;                                                    //
		V21 = _mm_xor_ps(V21, vMPPP);                                       //	change the sign of the first element
		V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(3, 3, 1, 3));                //	 W  W -Y -W
		V31 = _mm_xor_ps(V31, vMPPP);                                       //	change the sign of the first element
		Y = btCastiTo128f(_mm_shuffle_epi32(NQi, BT_SHUFFLE(3, 2, 0, 3)));  // -W -Z -X -W
		Z = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(1, 0, 1, 3)));   //  Y  X  Y  W

		vs = _mm_load_ss(&s);
		V21 = V21 * Y;
		V31 = V31 * Z;

		V1 = V1 + V11;
		V2 = V2 + V21;
		V3 = V3 + V31;

		vs = bt_splat3_ps(vs, 0);
		//	s ready
		V1 = V1 * vs;
		V2 = V2 * vs;
		V3 = V3 * vs;

		V1 = V1 + v1000;
		V2 = V2 + v0100;
		V3 = V3 + v0010;

		m_el[0] = V1;
		m_el[1] = V2;
		m_el[2] = V3;
#else
		btScalar xs = q.x() * s, ys = q.y() * s, zs = q.z() * s;
		btScalar wx = q.w() * xs, wy = q.w() * ys, wz = q.w() * zs;
		btScalar xx = q.x() * xs, xy = q.x() * ys, xz = q.x() * zs;
		btScalar yy = q.y() * ys, yz = q.y() * zs, zz = q.z() * zs;
		setValue(
			btScalar(1.0) - (yy + zz), xy - wz, xz + wy,
			xy + wz, btScalar(1.0) - (xx + zz), yz - wx,
			xz - wy, yz + wx, btScalar(1.0) - (xx + yy));
#endif
	}

	/** @brief Set the matrix from euler angles using YPR around YXZ respectively
	*  @param yaw Yaw about Y axis
	*  @param pitch Pitch about X axis
	*  @param roll Roll about Z axis 
	*/
	void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
	{
		setEulerZYX(roll, pitch, yaw);
	}

	/** @brief Set the matrix from euler angles YPR around ZYX axes
	* @param eulerX Roll about X axis
	* @param eulerY Pitch around Y axis
	* @param eulerZ Yaw about Z axis
	* 
	* These angles are used to produce a rotation matrix. The euler
	* angles are applied in ZYX order. I.e a vector is first rotated 
	* about X then Y and then Z
	**/
	void setEulerZYX(btScalar eulerX, btScalar eulerY, btScalar eulerZ)
	{
		///@todo proposed to reverse this since it's labeled zyx but takes arguments xyz and it will match all other parts of the code
		btScalar ci(btCos(eulerX));
		btScalar cj(btCos(eulerY));
		btScalar ch(btCos(eulerZ));
		btScalar si(btSin(eulerX));
		btScalar sj(btSin(eulerY));
		btScalar sh(btSin(eulerZ));
		btScalar cc = ci * ch;
		btScalar cs = ci * sh;
		btScalar sc = si * ch;
		btScalar ss = si * sh;

		setValue(cj * ch, sj * sc - cs, sj * cc + ss,
				 cj * sh, sj * ss + cc, sj * cs - sc,
				 -sj, cj * si, cj * ci);
	}

	/**@brief Set the matrix to the identity */
	void setIdentity()
	{
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
		m_el[0] = v1000;
		m_el[1] = v0100;
		m_el[2] = v0010;
#else
		setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0),
				 btScalar(0.0), btScalar(1.0), btScalar(0.0),
				 btScalar(0.0), btScalar(0.0), btScalar(1.0));
#endif
	}

	static const btMatrix3x3& getIdentity()
	{
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
		static const btMatrix3x3
			identityMatrix(v1000, v0100, v0010);
#else
		static const btMatrix3x3
			identityMatrix(
				btScalar(1.0), btScalar(0.0), btScalar(0.0),
				btScalar(0.0), btScalar(1.0), btScalar(0.0),
				btScalar(0.0), btScalar(0.0), btScalar(1.0));
#endif
		return identityMatrix;
	}

	/**@brief Fill the rotational part of an OpenGL matrix and clear the shear/perspective
	* @param m The array to be filled */
	void getOpenGLSubMatrix(btScalar * m) const
	{
#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
		__m128 v0 = m_el[0].mVec128;
		__m128 v1 = m_el[1].mVec128;
		__m128 v2 = m_el[2].mVec128;  //  x2 y2 z2 w2
		__m128* vm = (__m128*)m;
		__m128 vT;

		v2 = _mm_and_ps(v2, btvFFF0fMask);  //  x2 y2 z2 0

		vT = _mm_unpackhi_ps(v0, v1);  //	z0 z1 * *
		v0 = _mm_unpacklo_ps(v0, v1);  //	x0 x1 y0 y1

		v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3));                    // y0 y1 y2 0
		v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3));                    // x0 x1 x2 0
		v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT)));  // z0 z1 z2 0

		vm[0] = v0;
		vm[1] = v1;
		vm[2] = v2;
#elif defined(BT_USE_NEON)
		// note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
		static const uint32x2_t zMask = (const uint32x2_t){static_cast<uint32_t>(-1), 0};
		float32x4_t* vm = (float32x4_t*)m;
		float32x4x2_t top = vtrnq_f32(m_el[0].mVec128, m_el[1].mVec128);               // {x0 x1 z0 z1}, {y0 y1 w0 w1}
		float32x2x2_t bl = vtrn_f32(vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f));  // {x2  0 }, {y2 0}
		float32x4_t v0 = vcombine_f32(vget_low_f32(top.val[0]), bl.val[0]);
		float32x4_t v1 = vcombine_f32(vget_low_f32(top.val[1]), bl.val[1]);
		float32x2_t q = (float32x2_t)vand_u32((uint32x2_t)vget_high_f32(m_el[2].mVec128), zMask);
		float32x4_t v2 = vcombine_f32(vget_high_f32(top.val[0]), q);  // z0 z1 z2  0

		vm[0] = v0;
		vm[1] = v1;
		vm[2] = v2;
#else
		m[0] = btScalar(m_el[0].x());
		m[1] = btScalar(m_el[1].x());
		m[2] = btScalar(m_el[2].x());
		m[3] = btScalar(0.0);
		m[4] = btScalar(m_el[0].y());
		m[5] = btScalar(m_el[1].y());
		m[6] = btScalar(m_el[2].y());
		m[7] = btScalar(0.0);
		m[8] = btScalar(m_el[0].z());
		m[9] = btScalar(m_el[1].z());
		m[10] = btScalar(m_el[2].z());
		m[11] = btScalar(0.0);
#endif
	}

	/**@brief Get the matrix represented as a quaternion 
	* @param q The quaternion which will be set */
	void getRotation(btQuaternion & q) const
	{
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
		btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
		btScalar s, x;

		union {
			btSimdFloat4 vec;
			btScalar f[4];
		} temp;

		if (trace > btScalar(0.0))
		{
			x = trace + btScalar(1.0);

			temp.f[0] = m_el[2].y() - m_el[1].z();
			temp.f[1] = m_el[0].z() - m_el[2].x();
			temp.f[2] = m_el[1].x() - m_el[0].y();
			temp.f[3] = x;
			//temp.f[3]= s * btScalar(0.5);
		}
		else
		{
			int i, j, k;
			if (m_el[0].x() < m_el[1].y())
			{
				if (m_el[1].y() < m_el[2].z())
				{
					i = 2;
					j = 0;
					k = 1;
				}
				else
				{
					i = 1;
					j = 2;
					k = 0;
				}
			}
			else
			{
				if (m_el[0].x() < m_el[2].z())
				{
					i = 2;
					j = 0;
					k = 1;
				}
				else
				{
					i = 0;
					j = 1;
					k = 2;
				}
			}

			x = m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0);

			temp.f[3] = (m_el[k][j] - m_el[j][k]);
			temp.f[j] = (m_el[j][i] + m_el[i][j]);
			temp.f[k] = (m_el[k][i] + m_el[i][k]);
			temp.f[i] = x;
			//temp.f[i] = s * btScalar(0.5);
		}

		s = btSqrt(x);
		q.set128(temp.vec);
		s = btScalar(0.5) / s;

		q *= s;
#else
		btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();

		btScalar temp[4];

		if (trace > btScalar(0.0))
		{
			btScalar s = btSqrt(trace + btScalar(1.0));
			temp[3] = (s * btScalar(0.5));
			s = btScalar(0.5) / s;

			temp[0] = ((m_el[2].y() - m_el[1].z()) * s);
			temp[1] = ((m_el[0].z() - m_el[2].x()) * s);
			temp[2] = ((m_el[1].x() - m_el[0].y()) * s);
		}
		else
		{
			int i = m_el[0].x() < m_el[1].y() ? (m_el[1].y() < m_el[2].z() ? 2 : 1) : (m_el[0].x() < m_el[2].z() ? 2 : 0);
			int j = (i + 1) % 3;
			int k = (i + 2) % 3;

			btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0));
			temp[i] = s * btScalar(0.5);
			s = btScalar(0.5) / s;

			temp[3] = (m_el[k][j] - m_el[j][k]) * s;
			temp[j] = (m_el[j][i] + m_el[i][j]) * s;
			temp[k] = (m_el[k][i] + m_el[i][k]) * s;
		}
		q.setValue(temp[0], temp[1], temp[2], temp[3]);
#endif
	}

	/**@brief Get the matrix represented as euler angles around YXZ, roundtrip with setEulerYPR
	* @param yaw Yaw around Y axis
	* @param pitch Pitch around X axis
	* @param roll around Z axis */
	void getEulerYPR(btScalar & yaw, btScalar & pitch, btScalar & roll) const
	{
		// first use the normal calculus
		yaw = btScalar(btAtan2(m_el[1].x(), m_el[0].x()));
		pitch = btScalar(btAsin(-m_el[2].x()));
		roll = btScalar(btAtan2(m_el[2].y(), m_el[2].z()));

		// on pitch = +/-HalfPI
		if (btFabs(pitch) == SIMD_HALF_PI)
		{
			if (yaw > 0)
				yaw -= SIMD_PI;
			else
				yaw += SIMD_PI;

			if (roll > 0)
				roll -= SIMD_PI;
			else
				roll += SIMD_PI;
		}
	};

	/**@brief Get the matrix represented as euler angles around ZYX
	* @param yaw Yaw around Z axis
	* @param pitch Pitch around Y axis
	* @param roll around X axis 
	* @param solution_number Which solution of two possible solutions ( 1 or 2) are possible values*/
	void getEulerZYX(btScalar & yaw, btScalar & pitch, btScalar & roll, unsigned int solution_number = 1) const
	{
		struct Euler
		{
			btScalar yaw;
			btScalar pitch;
			btScalar roll;
		};

		Euler euler_out;
		Euler euler_out2;  //second solution
		//get the pointer to the raw data

		// Check that pitch is not at a singularity
		if (btFabs(m_el[2].x()) >= 1)
		{
			euler_out.yaw = 0;
			euler_out2.yaw = 0;

			// From difference of angles formula
			btScalar delta = btAtan2(m_el[0].x(), m_el[0].z());
			if (m_el[2].x() > 0)  //gimbal locked up
			{
				euler_out.pitch = SIMD_PI / btScalar(2.0);
				euler_out2.pitch = SIMD_PI / btScalar(2.0);
				euler_out.roll = euler_out.pitch + delta;
				euler_out2.roll = euler_out.pitch + delta;
			}
			else  // gimbal locked down
			{
				euler_out.pitch = -SIMD_PI / btScalar(2.0);
				euler_out2.pitch = -SIMD_PI / btScalar(2.0);
				euler_out.roll = -euler_out.pitch + delta;
				euler_out2.roll = -euler_out.pitch + delta;
			}
		}
		else
		{
			euler_out.pitch = -btAsin(m_el[2].x());
			euler_out2.pitch = SIMD_PI - euler_out.pitch;

			euler_out.roll = btAtan2(m_el[2].y() / btCos(euler_out.pitch),
									 m_el[2].z() / btCos(euler_out.pitch));
			euler_out2.roll = btAtan2(m_el[2].y() / btCos(euler_out2.pitch),
									  m_el[2].z() / btCos(euler_out2.pitch));

			euler_out.yaw = btAtan2(m_el[1].x() / btCos(euler_out.pitch),
									m_el[0].x() / btCos(euler_out.pitch));
			euler_out2.yaw = btAtan2(m_el[1].x() / btCos(euler_out2.pitch),
									 m_el[0].x() / btCos(euler_out2.pitch));
		}

		if (solution_number == 1)
		{
			yaw = euler_out.yaw;
			pitch = euler_out.pitch;
			roll = euler_out.roll;
		}
		else
		{
			yaw = euler_out2.yaw;
			pitch = euler_out2.pitch;
			roll = euler_out2.roll;
		}
	}

	/**@brief Create a scaled copy of the matrix 
	* @param s Scaling vector The elements of the vector will scale each column */

	btMatrix3x3 scaled(const btVector3& s) const
	{
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
		return btMatrix3x3(m_el[0] * s, m_el[1] * s, m_el[2] * s);
#else
		return btMatrix3x3(
			m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(),
			m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(),
			m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z());
#endif
	}

	/**@brief Return the determinant of the matrix */
	btScalar determinant() const;
	/**@brief Return the adjoint of the matrix */
	btMatrix3x3 adjoint() const;
	/**@brief Return the matrix with all values non negative */
	btMatrix3x3 absolute() const;
	/**@brief Return the transpose of the matrix */
	btMatrix3x3 transpose() const;
	/**@brief Return the inverse of the matrix */
	btMatrix3x3 inverse() const;

	/// Solve A * x = b, where b is a column vector. This is more efficient
	/// than computing the inverse in one-shot cases.
	///Solve33 is from Box2d, thanks to Erin Catto,
	btVector3 solve33(const btVector3& b) const
	{
		btVector3 col1 = getColumn(0);
		btVector3 col2 = getColumn(1);
		btVector3 col3 = getColumn(2);

		btScalar det = btDot(col1, btCross(col2, col3));
		if (btFabs(det) > SIMD_EPSILON)
		{
			det = 1.0f / det;
		}
		btVector3 x;
		x[0] = det * btDot(b, btCross(col2, col3));
		x[1] = det * btDot(col1, btCross(b, col3));
		x[2] = det * btDot(col1, btCross(col2, b));
		return x;
	}

	btMatrix3x3 transposeTimes(const btMatrix3x3& m) const;
	btMatrix3x3 timesTranspose(const btMatrix3x3& m) const;

	SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const
	{
		return m_el[0].x() * v.x() + m_el[1].x() * v.y() + m_el[2].x() * v.z();
	}
	SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const
	{
		return m_el[0].y() * v.x() + m_el[1].y() * v.y() + m_el[2].y() * v.z();
	}
	SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const
	{
		return m_el[0].z() * v.x() + m_el[1].z() * v.y() + m_el[2].z() * v.z();
	}

	///extractRotation is from "A robust method to extract the rotational part of deformations"
	///See http://dl.acm.org/citation.cfm?doid=2994258.2994269
	///decomposes a matrix A in a orthogonal matrix R and a
	///symmetric matrix S:
	///A = R*S.
	///note that R can include both rotation and scaling.
	SIMD_FORCE_INLINE void extractRotation(btQuaternion & q, btScalar tolerance = 1.0e-9, int maxIter = 100)
	{
		int iter = 0;
		btScalar w;
		const btMatrix3x3& A = *this;
		for (iter = 0; iter < maxIter; iter++)
		{
			btMatrix3x3 R(q);
			btVector3 omega = (R.getColumn(0).cross(A.getColumn(0)) + R.getColumn(1).cross(A.getColumn(1)) + R.getColumn(2).cross(A.getColumn(2))) * (btScalar(1.0) / btFabs(R.getColumn(0).dot(A.getColumn(0)) + R.getColumn(1).dot(A.getColumn(1)) + R.getColumn(2).dot(A.getColumn(2))) +
																																					  tolerance);
			w = omega.norm();
			if (w < tolerance)
				break;
			q = btQuaternion(btVector3((btScalar(1.0) / w) * omega), w) *
				q;
			q.normalize();
		}
	}

	/**@brief diagonalizes this matrix by the Jacobi method.
	* @param rot stores the rotation from the coordinate system in which the matrix is diagonal to the original
	* coordinate system, i.e., old_this = rot * new_this * rot^T.
	* @param threshold See iteration
	* @param iteration The iteration stops when all off-diagonal elements are less than the threshold multiplied
	* by the sum of the absolute values of the diagonal, or when maxSteps have been executed.
	*
	* Note that this matrix is assumed to be symmetric.
	*/
	void diagonalize(btMatrix3x3 & rot, btScalar threshold, int maxSteps)
	{
		rot.setIdentity();
		for (int step = maxSteps; step > 0; step--)
		{
			// find off-diagonal element [p][q] with largest magnitude
			int p = 0;
			int q = 1;
			int r = 2;
			btScalar max = btFabs(m_el[0][1]);
			btScalar v = btFabs(m_el[0][2]);
			if (v > max)
			{
				q = 2;
				r = 1;
				max = v;
			}
			v = btFabs(m_el[1][2]);
			if (v > max)
			{
				p = 1;
				q = 2;
				r = 0;
				max = v;
			}

			btScalar t = threshold * (btFabs(m_el[0][0]) + btFabs(m_el[1][1]) + btFabs(m_el[2][2]));
			if (max <= t)
			{
				if (max <= SIMD_EPSILON * t)
				{
					return;
				}
				step = 1;
			}

			// compute Jacobi rotation J which leads to a zero for element [p][q]
			btScalar mpq = m_el[p][q];
			btScalar theta = (m_el[q][q] - m_el[p][p]) / (2 * mpq);
			btScalar theta2 = theta * theta;
			btScalar cos;
			btScalar sin;
			if (theta2 * theta2 < btScalar(10 / SIMD_EPSILON))
			{
				t = (theta >= 0) ? 1 / (theta + btSqrt(1 + theta2))
								 : 1 / (theta - btSqrt(1 + theta2));
				cos = 1 / btSqrt(1 + t * t);
				sin = cos * t;
			}
			else
			{
				// approximation for large theta-value, i.e., a nearly diagonal matrix
				t = 1 / (theta * (2 + btScalar(0.5) / theta2));
				cos = 1 - btScalar(0.5) * t * t;
				sin = cos * t;
			}

			// apply rotation to matrix (this = J^T * this * J)
			m_el[p][q] = m_el[q][p] = 0;
			m_el[p][p] -= t * mpq;
			m_el[q][q] += t * mpq;
			btScalar mrp = m_el[r][p];
			btScalar mrq = m_el[r][q];
			m_el[r][p] = m_el[p][r] = cos * mrp - sin * mrq;
			m_el[r][q] = m_el[q][r] = cos * mrq + sin * mrp;

			// apply rotation to rot (rot = rot * J)
			for (int i = 0; i < 3; i++)
			{
				btVector3& row = rot[i];
				mrp = row[p];
				mrq = row[q];
				row[p] = cos * mrp - sin * mrq;
				row[q] = cos * mrq + sin * mrp;
			}
		}
	}

	/**@brief Calculate the matrix cofactor 
	* @param r1 The first row to use for calculating the cofactor
	* @param c1 The first column to use for calculating the cofactor
	* @param r1 The second row to use for calculating the cofactor
	* @param c1 The second column to use for calculating the cofactor
	* See http://en.wikipedia.org/wiki/Cofactor_(linear_algebra) for more details
	*/
	btScalar cofac(int r1, int c1, int r2, int c2) const
	{
		return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1];
	}

	void serialize(struct btMatrix3x3Data & dataOut) const;

	void serializeFloat(struct btMatrix3x3FloatData & dataOut) const;

	void deSerialize(const struct btMatrix3x3Data& dataIn);

	void deSerializeFloat(const struct btMatrix3x3FloatData& dataIn);

	void deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn);
};

SIMD_FORCE_INLINE btMatrix3x3&
btMatrix3x3::operator*=(const btMatrix3x3& m)
{
#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
	__m128 rv00, rv01, rv02;
	__m128 rv10, rv11, rv12;
	__m128 rv20, rv21, rv22;
	__m128 mv0, mv1, mv2;

	rv02 = m_el[0].mVec128;
	rv12 = m_el[1].mVec128;
	rv22 = m_el[2].mVec128;

	mv0 = _mm_and_ps(m[0].mVec128, btvFFF0fMask);
	mv1 = _mm_and_ps(m[1].mVec128, btvFFF0fMask);
	mv2 = _mm_and_ps(m[2].mVec128, btvFFF0fMask);

	// rv0
	rv00 = bt_splat_ps(rv02, 0);
	rv01 = bt_splat_ps(rv02, 1);
	rv02 = bt_splat_ps(rv02, 2);

	rv00 = _mm_mul_ps(rv00, mv0);
	rv01 = _mm_mul_ps(rv01, mv1);
	rv02 = _mm_mul_ps(rv02, mv2);

	// rv1
	rv10 = bt_splat_ps(rv12, 0);
	rv11 = bt_splat_ps(rv12, 1);
	rv12 = bt_splat_ps(rv12, 2);

	rv10 = _mm_mul_ps(rv10, mv0);
	rv11 = _mm_mul_ps(rv11, mv1);
	rv12 = _mm_mul_ps(rv12, mv2);

	// rv2
	rv20 = bt_splat_ps(rv22, 0);
	rv21 = bt_splat_ps(rv22, 1);
	rv22 = bt_splat_ps(rv22, 2);

	rv20 = _mm_mul_ps(rv20, mv0);
	rv21 = _mm_mul_ps(rv21, mv1);
	rv22 = _mm_mul_ps(rv22, mv2);

	rv00 = _mm_add_ps(rv00, rv01);
	rv10 = _mm_add_ps(rv10, rv11);
	rv20 = _mm_add_ps(rv20, rv21);

	m_el[0].mVec128 = _mm_add_ps(rv00, rv02);
	m_el[1].mVec128 = _mm_add_ps(rv10, rv12);
	m_el[2].mVec128 = _mm_add_ps(rv20, rv22);

#elif defined(BT_USE_NEON)

	float32x4_t rv0, rv1, rv2;
	float32x4_t v0, v1, v2;
	float32x4_t mv0, mv1, mv2;

	v0 = m_el[0].mVec128;
	v1 = m_el[1].mVec128;
	v2 = m_el[2].mVec128;

	mv0 = (float32x4_t)vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask);
	mv1 = (float32x4_t)vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask);
	mv2 = (float32x4_t)vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask);

	rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0);
	rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0);
	rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0);

	rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1);
	rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1);
	rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1);

	rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0);
	rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0);
	rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0);

	m_el[0].mVec128 = rv0;
	m_el[1].mVec128 = rv1;
	m_el[2].mVec128 = rv2;
#else
	setValue(
		m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]),
		m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]),
		m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2]));
#endif
	return *this;
}

SIMD_FORCE_INLINE btMatrix3x3&
btMatrix3x3::operator+=(const btMatrix3x3& m)
{
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
	m_el[0].mVec128 = m_el[0].mVec128 + m.m_el[0].mVec128;
	m_el[1].mVec128 = m_el[1].mVec128 + m.m_el[1].mVec128;
	m_el[2].mVec128 = m_el[2].mVec128 + m.m_el[2].mVec128;
#else
	setValue(
		m_el[0][0] + m.m_el[0][0],
		m_el[0][1] + m.m_el[0][1],
		m_el[0][2] + m.m_el[0][2],
		m_el[1][0] + m.m_el[1][0],
		m_el[1][1] + m.m_el[1][1],
		m_el[1][2] + m.m_el[1][2],
		m_el[2][0] + m.m_el[2][0],
		m_el[2][1] + m.m_el[2][1],
		m_el[2][2] + m.m_el[2][2]);
#endif
	return *this;
}

SIMD_FORCE_INLINE btMatrix3x3
operator*(const btMatrix3x3& m, const btScalar& k)
{
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
	__m128 vk = bt_splat_ps(_mm_load_ss((float*)&k), 0x80);
	return btMatrix3x3(
		_mm_mul_ps(m[0].mVec128, vk),
		_mm_mul_ps(m[1].mVec128, vk),
		_mm_mul_ps(m[2].mVec128, vk));
#elif defined(BT_USE_NEON)
	return btMatrix3x3(
		vmulq_n_f32(m[0].mVec128, k),
		vmulq_n_f32(m[1].mVec128, k),
		vmulq_n_f32(m[2].mVec128, k));
#else
	return btMatrix3x3(
		m[0].x() * k, m[0].y() * k, m[0].z() * k,
		m[1].x() * k, m[1].y() * k, m[1].z() * k,
		m[2].x() * k, m[2].y() * k, m[2].z() * k);
#endif
}

SIMD_FORCE_INLINE btMatrix3x3
operator+(const btMatrix3x3& m1, const btMatrix3x3& m2)
{
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
	return btMatrix3x3(
		m1[0].mVec128 + m2[0].mVec128,
		m1[1].mVec128 + m2[1].mVec128,
		m1[2].mVec128 + m2[2].mVec128);
#else
	return btMatrix3x3(
		m1[0][0] + m2[0][0],
		m1[0][1] + m2[0][1],
		m1[0][2] + m2[0][2],

		m1[1][0] + m2[1][0],
		m1[1][1] + m2[1][1],
		m1[1][2] + m2[1][2],

		m1[2][0] + m2[2][0],
		m1[2][1] + m2[2][1],
		m1[2][2] + m2[2][2]);
#endif
}

SIMD_FORCE_INLINE btMatrix3x3
operator-(const btMatrix3x3& m1, const btMatrix3x3& m2)
{
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
	return btMatrix3x3(
		m1[0].mVec128 - m2[0].mVec128,
		m1[1].mVec128 - m2[1].mVec128,
		m1[2].mVec128 - m2[2].mVec128);
#else
	return btMatrix3x3(
		m1[0][0] - m2[0][0],
		m1[0][1] - m2[0][1],
		m1[0][2] - m2[0][2],

		m1[1][0] - m2[1][0],
		m1[1][1] - m2[1][1],
		m1[1][2] - m2[1][2],

		m1[2][0] - m2[2][0],
		m1[2][1] - m2[2][1],
		m1[2][2] - m2[2][2]);
#endif
}

SIMD_FORCE_INLINE btMatrix3x3&
btMatrix3x3::operator-=(const btMatrix3x3& m)
{
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
	m_el[0].mVec128 = m_el[0].mVec128 - m.m_el[0].mVec128;
	m_el[1].mVec128 = m_el[1].mVec128 - m.m_el[1].mVec128;
	m_el[2].mVec128 = m_el[2].mVec128 - m.m_el[2].mVec128;
#else
	setValue(
		m_el[0][0] - m.m_el[0][0],
		m_el[0][1] - m.m_el[0][1],
		m_el[0][2] - m.m_el[0][2],
		m_el[1][0] - m.m_el[1][0],
		m_el[1][1] - m.m_el[1][1],
		m_el[1][2] - m.m_el[1][2],
		m_el[2][0] - m.m_el[2][0],
		m_el[2][1] - m.m_el[2][1],
		m_el[2][2] - m.m_el[2][2]);
#endif
	return *this;
}

SIMD_FORCE_INLINE btScalar
btMatrix3x3::determinant() const
{
	return btTriple((*this)[0], (*this)[1], (*this)[2]);
}

SIMD_FORCE_INLINE btMatrix3x3
btMatrix3x3::absolute() const
{
#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
	return btMatrix3x3(
		_mm_and_ps(m_el[0].mVec128, btvAbsfMask),
		_mm_and_ps(m_el[1].mVec128, btvAbsfMask),
		_mm_and_ps(m_el[2].mVec128, btvAbsfMask));
#elif defined(BT_USE_NEON)
	return btMatrix3x3(
		(float32x4_t)vandq_s32((int32x4_t)m_el[0].mVec128, btv3AbsMask),
		(float32x4_t)vandq_s32((int32x4_t)m_el[1].mVec128, btv3AbsMask),
		(float32x4_t)vandq_s32((int32x4_t)m_el[2].mVec128, btv3AbsMask));
#else
	return btMatrix3x3(
		btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()),
		btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()),
		btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z()));
#endif
}

SIMD_FORCE_INLINE btMatrix3x3
btMatrix3x3::transpose() const
{
#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
	__m128 v0 = m_el[0].mVec128;
	__m128 v1 = m_el[1].mVec128;
	__m128 v2 = m_el[2].mVec128;  //  x2 y2 z2 w2
	__m128 vT;

	v2 = _mm_and_ps(v2, btvFFF0fMask);  //  x2 y2 z2 0

	vT = _mm_unpackhi_ps(v0, v1);  //	z0 z1 * *
	v0 = _mm_unpacklo_ps(v0, v1);  //	x0 x1 y0 y1

	v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3));                    // y0 y1 y2 0
	v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3));                    // x0 x1 x2 0
	v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT)));  // z0 z1 z2 0

	return btMatrix3x3(v0, v1, v2);
#elif defined(BT_USE_NEON)
	// note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
	static const uint32x2_t zMask = (const uint32x2_t){static_cast<uint32_t>(-1), 0};
	float32x4x2_t top = vtrnq_f32(m_el[0].mVec128, m_el[1].mVec128);               // {x0 x1 z0 z1}, {y0 y1 w0 w1}
	float32x2x2_t bl = vtrn_f32(vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f));  // {x2  0 }, {y2 0}
	float32x4_t v0 = vcombine_f32(vget_low_f32(top.val[0]), bl.val[0]);
	float32x4_t v1 = vcombine_f32(vget_low_f32(top.val[1]), bl.val[1]);
	float32x2_t q = (float32x2_t)vand_u32((uint32x2_t)vget_high_f32(m_el[2].mVec128), zMask);
	float32x4_t v2 = vcombine_f32(vget_high_f32(top.val[0]), q);  // z0 z1 z2  0
	return btMatrix3x3(v0, v1, v2);
#else
	return btMatrix3x3(m_el[0].x(), m_el[1].x(), m_el[2].x(),
					   m_el[0].y(), m_el[1].y(), m_el[2].y(),
					   m_el[0].z(), m_el[1].z(), m_el[2].z());
#endif
}

SIMD_FORCE_INLINE btMatrix3x3
btMatrix3x3::adjoint() const
{
	return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2),
					   cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0),
					   cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1));
}

SIMD_FORCE_INLINE btMatrix3x3
btMatrix3x3::inverse() const
{
	btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1));
	btScalar det = (*this)[0].dot(co);
	//btFullAssert(det != btScalar(0.0));
	btAssert(det != btScalar(0.0));
	btScalar s = btScalar(1.0) / det;
	return btMatrix3x3(co.x() * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
					   co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
					   co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
}

SIMD_FORCE_INLINE btMatrix3x3
btMatrix3x3::transposeTimes(const btMatrix3x3& m) const
{
#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
	// zeros w
	//    static const __m128i xyzMask = (const __m128i){ -1ULL, 0xffffffffULL };
	__m128 row = m_el[0].mVec128;
	__m128 m0 = _mm_and_ps(m.getRow(0).mVec128, btvFFF0fMask);
	__m128 m1 = _mm_and_ps(m.getRow(1).mVec128, btvFFF0fMask);
	__m128 m2 = _mm_and_ps(m.getRow(2).mVec128, btvFFF0fMask);
	__m128 r0 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0));
	__m128 r1 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0x55));
	__m128 r2 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0xaa));
	row = m_el[1].mVec128;
	r0 = _mm_add_ps(r0, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0)));
	r1 = _mm_add_ps(r1, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0x55)));
	r2 = _mm_add_ps(r2, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0xaa)));
	row = m_el[2].mVec128;
	r0 = _mm_add_ps(r0, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0)));
	r1 = _mm_add_ps(r1, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0x55)));
	r2 = _mm_add_ps(r2, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0xaa)));
	return btMatrix3x3(r0, r1, r2);

#elif defined BT_USE_NEON
	// zeros w
	static const uint32x4_t xyzMask = (const uint32x4_t){static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0};
	float32x4_t m0 = (float32x4_t)vandq_u32((uint32x4_t)m.getRow(0).mVec128, xyzMask);
	float32x4_t m1 = (float32x4_t)vandq_u32((uint32x4_t)m.getRow(1).mVec128, xyzMask);
	float32x4_t m2 = (float32x4_t)vandq_u32((uint32x4_t)m.getRow(2).mVec128, xyzMask);
	float32x4_t row = m_el[0].mVec128;
	float32x4_t r0 = vmulq_lane_f32(m0, vget_low_f32(row), 0);
	float32x4_t r1 = vmulq_lane_f32(m0, vget_low_f32(row), 1);
	float32x4_t r2 = vmulq_lane_f32(m0, vget_high_f32(row), 0);
	row = m_el[1].mVec128;
	r0 = vmlaq_lane_f32(r0, m1, vget_low_f32(row), 0);
	r1 = vmlaq_lane_f32(r1, m1, vget_low_f32(row), 1);
	r2 = vmlaq_lane_f32(r2, m1, vget_high_f32(row), 0);
	row = m_el[2].mVec128;
	r0 = vmlaq_lane_f32(r0, m2, vget_low_f32(row), 0);
	r1 = vmlaq_lane_f32(r1, m2, vget_low_f32(row), 1);
	r2 = vmlaq_lane_f32(r2, m2, vget_high_f32(row), 0);
	return btMatrix3x3(r0, r1, r2);
#else
	return btMatrix3x3(
		m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(),
		m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(),
		m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(),
		m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(),
		m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(),
		m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(),
		m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(),
		m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(),
		m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z());
#endif
}

SIMD_FORCE_INLINE btMatrix3x3
btMatrix3x3::timesTranspose(const btMatrix3x3& m) const
{
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
	__m128 a0 = m_el[0].mVec128;
	__m128 a1 = m_el[1].mVec128;
	__m128 a2 = m_el[2].mVec128;

	btMatrix3x3 mT = m.transpose();  // we rely on transpose() zeroing w channel so that we don't have to do it here
	__m128 mx = mT[0].mVec128;
	__m128 my = mT[1].mVec128;
	__m128 mz = mT[2].mVec128;

	__m128 r0 = _mm_mul_ps(mx, _mm_shuffle_ps(a0, a0, 0x00));
	__m128 r1 = _mm_mul_ps(mx, _mm_shuffle_ps(a1, a1, 0x00));
	__m128 r2 = _mm_mul_ps(mx, _mm_shuffle_ps(a2, a2, 0x00));
	r0 = _mm_add_ps(r0, _mm_mul_ps(my, _mm_shuffle_ps(a0, a0, 0x55)));
	r1 = _mm_add_ps(r1, _mm_mul_ps(my, _mm_shuffle_ps(a1, a1, 0x55)));
	r2 = _mm_add_ps(r2, _mm_mul_ps(my, _mm_shuffle_ps(a2, a2, 0x55)));
	r0 = _mm_add_ps(r0, _mm_mul_ps(mz, _mm_shuffle_ps(a0, a0, 0xaa)));
	r1 = _mm_add_ps(r1, _mm_mul_ps(mz, _mm_shuffle_ps(a1, a1, 0xaa)));
	r2 = _mm_add_ps(r2, _mm_mul_ps(mz, _mm_shuffle_ps(a2, a2, 0xaa)));
	return btMatrix3x3(r0, r1, r2);

#elif defined BT_USE_NEON
	float32x4_t a0 = m_el[0].mVec128;
	float32x4_t a1 = m_el[1].mVec128;
	float32x4_t a2 = m_el[2].mVec128;

	btMatrix3x3 mT = m.transpose();  // we rely on transpose() zeroing w channel so that we don't have to do it here
	float32x4_t mx = mT[0].mVec128;
	float32x4_t my = mT[1].mVec128;
	float32x4_t mz = mT[2].mVec128;

	float32x4_t r0 = vmulq_lane_f32(mx, vget_low_f32(a0), 0);
	float32x4_t r1 = vmulq_lane_f32(mx, vget_low_f32(a1), 0);
	float32x4_t r2 = vmulq_lane_f32(mx, vget_low_f32(a2), 0);
	r0 = vmlaq_lane_f32(r0, my, vget_low_f32(a0), 1);
	r1 = vmlaq_lane_f32(r1, my, vget_low_f32(a1), 1);
	r2 = vmlaq_lane_f32(r2, my, vget_low_f32(a2), 1);
	r0 = vmlaq_lane_f32(r0, mz, vget_high_f32(a0), 0);
	r1 = vmlaq_lane_f32(r1, mz, vget_high_f32(a1), 0);
	r2 = vmlaq_lane_f32(r2, mz, vget_high_f32(a2), 0);
	return btMatrix3x3(r0, r1, r2);

#else
	return btMatrix3x3(
		m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]),
		m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]),
		m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2]));
#endif
}

SIMD_FORCE_INLINE btVector3
operator*(const btMatrix3x3& m, const btVector3& v)
{
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
	return v.dot3(m[0], m[1], m[2]);
#else
	return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v));
#endif
}

SIMD_FORCE_INLINE btVector3
operator*(const btVector3& v, const btMatrix3x3& m)
{
#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))

	const __m128 vv = v.mVec128;

	__m128 c0 = bt_splat_ps(vv, 0);
	__m128 c1 = bt_splat_ps(vv, 1);
	__m128 c2 = bt_splat_ps(vv, 2);

	c0 = _mm_mul_ps(c0, _mm_and_ps(m[0].mVec128, btvFFF0fMask));
	c1 = _mm_mul_ps(c1, _mm_and_ps(m[1].mVec128, btvFFF0fMask));
	c0 = _mm_add_ps(c0, c1);
	c2 = _mm_mul_ps(c2, _mm_and_ps(m[2].mVec128, btvFFF0fMask));

	return btVector3(_mm_add_ps(c0, c2));
#elif defined(BT_USE_NEON)
	const float32x4_t vv = v.mVec128;
	const float32x2_t vlo = vget_low_f32(vv);
	const float32x2_t vhi = vget_high_f32(vv);

	float32x4_t c0, c1, c2;

	c0 = (float32x4_t)vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask);
	c1 = (float32x4_t)vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask);
	c2 = (float32x4_t)vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask);

	c0 = vmulq_lane_f32(c0, vlo, 0);
	c1 = vmulq_lane_f32(c1, vlo, 1);
	c2 = vmulq_lane_f32(c2, vhi, 0);
	c0 = vaddq_f32(c0, c1);
	c0 = vaddq_f32(c0, c2);

	return btVector3(c0);
#else
	return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v));
#endif
}

SIMD_FORCE_INLINE btMatrix3x3
operator*(const btMatrix3x3& m1, const btMatrix3x3& m2)
{
#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))

	__m128 m10 = m1[0].mVec128;
	__m128 m11 = m1[1].mVec128;
	__m128 m12 = m1[2].mVec128;

	__m128 m2v = _mm_and_ps(m2[0].mVec128, btvFFF0fMask);

	__m128 c0 = bt_splat_ps(m10, 0);
	__m128 c1 = bt_splat_ps(m11, 0);
	__m128 c2 = bt_splat_ps(m12, 0);

	c0 = _mm_mul_ps(c0, m2v);
	c1 = _mm_mul_ps(c1, m2v);
	c2 = _mm_mul_ps(c2, m2v);

	m2v = _mm_and_ps(m2[1].mVec128, btvFFF0fMask);

	__m128 c0_1 = bt_splat_ps(m10, 1);
	__m128 c1_1 = bt_splat_ps(m11, 1);
	__m128 c2_1 = bt_splat_ps(m12, 1);

	c0_1 = _mm_mul_ps(c0_1, m2v);
	c1_1 = _mm_mul_ps(c1_1, m2v);
	c2_1 = _mm_mul_ps(c2_1, m2v);

	m2v = _mm_and_ps(m2[2].mVec128, btvFFF0fMask);

	c0 = _mm_add_ps(c0, c0_1);
	c1 = _mm_add_ps(c1, c1_1);
	c2 = _mm_add_ps(c2, c2_1);

	m10 = bt_splat_ps(m10, 2);
	m11 = bt_splat_ps(m11, 2);
	m12 = bt_splat_ps(m12, 2);

	m10 = _mm_mul_ps(m10, m2v);
	m11 = _mm_mul_ps(m11, m2v);
	m12 = _mm_mul_ps(m12, m2v);

	c0 = _mm_add_ps(c0, m10);
	c1 = _mm_add_ps(c1, m11);
	c2 = _mm_add_ps(c2, m12);

	return btMatrix3x3(c0, c1, c2);

#elif defined(BT_USE_NEON)

	float32x4_t rv0, rv1, rv2;
	float32x4_t v0, v1, v2;
	float32x4_t mv0, mv1, mv2;

	v0 = m1[0].mVec128;
	v1 = m1[1].mVec128;
	v2 = m1[2].mVec128;

	mv0 = (float32x4_t)vandq_s32((int32x4_t)m2[0].mVec128, btvFFF0Mask);
	mv1 = (float32x4_t)vandq_s32((int32x4_t)m2[1].mVec128, btvFFF0Mask);
	mv2 = (float32x4_t)vandq_s32((int32x4_t)m2[2].mVec128, btvFFF0Mask);

	rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0);
	rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0);
	rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0);

	rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1);
	rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1);
	rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1);

	rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0);
	rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0);
	rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0);

	return btMatrix3x3(rv0, rv1, rv2);

#else
	return btMatrix3x3(
		m2.tdotx(m1[0]), m2.tdoty(m1[0]), m2.tdotz(m1[0]),
		m2.tdotx(m1[1]), m2.tdoty(m1[1]), m2.tdotz(m1[1]),
		m2.tdotx(m1[2]), m2.tdoty(m1[2]), m2.tdotz(m1[2]));
#endif
}

/*
SIMD_FORCE_INLINE btMatrix3x3 btMultTransposeLeft(const btMatrix3x3& m1, const btMatrix3x3& m2) {
return btMatrix3x3(
m1[0][0] * m2[0][0] + m1[1][0] * m2[1][0] + m1[2][0] * m2[2][0],
m1[0][0] * m2[0][1] + m1[1][0] * m2[1][1] + m1[2][0] * m2[2][1],
m1[0][0] * m2[0][2] + m1[1][0] * m2[1][2] + m1[2][0] * m2[2][2],
m1[0][1] * m2[0][0] + m1[1][1] * m2[1][0] + m1[2][1] * m2[2][0],
m1[0][1] * m2[0][1] + m1[1][1] * m2[1][1] + m1[2][1] * m2[2][1],
m1[0][1] * m2[0][2] + m1[1][1] * m2[1][2] + m1[2][1] * m2[2][2],
m1[0][2] * m2[0][0] + m1[1][2] * m2[1][0] + m1[2][2] * m2[2][0],
m1[0][2] * m2[0][1] + m1[1][2] * m2[1][1] + m1[2][2] * m2[2][1],
m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]);
}
*/

/**@brief Equality operator between two matrices
* It will test all elements are equal.  */
SIMD_FORCE_INLINE bool operator==(const btMatrix3x3& m1, const btMatrix3x3& m2)
{
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))

	__m128 c0, c1, c2;

	c0 = _mm_cmpeq_ps(m1[0].mVec128, m2[0].mVec128);
	c1 = _mm_cmpeq_ps(m1[1].mVec128, m2[1].mVec128);
	c2 = _mm_cmpeq_ps(m1[2].mVec128, m2[2].mVec128);

	c0 = _mm_and_ps(c0, c1);
	c0 = _mm_and_ps(c0, c2);

	int m = _mm_movemask_ps((__m128)c0);
	return (0x7 == (m & 0x7));

#else
	return (m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] &&
			m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] &&
			m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2]);
#endif
}

///for serialization
struct btMatrix3x3FloatData
{
	btVector3FloatData m_el[3];
};

///for serialization
struct btMatrix3x3DoubleData
{
	btVector3DoubleData m_el[3];
};

SIMD_FORCE_INLINE void btMatrix3x3::serialize(struct btMatrix3x3Data& dataOut) const
{
	for (int i = 0; i < 3; i++)
		m_el[i].serialize(dataOut.m_el[i]);
}

SIMD_FORCE_INLINE void btMatrix3x3::serializeFloat(struct btMatrix3x3FloatData& dataOut) const
{
	for (int i = 0; i < 3; i++)
		m_el[i].serializeFloat(dataOut.m_el[i]);
}

SIMD_FORCE_INLINE void btMatrix3x3::deSerialize(const struct btMatrix3x3Data& dataIn)
{
	for (int i = 0; i < 3; i++)
		m_el[i].deSerialize(dataIn.m_el[i]);
}

SIMD_FORCE_INLINE void btMatrix3x3::deSerializeFloat(const struct btMatrix3x3FloatData& dataIn)
{
	for (int i = 0; i < 3; i++)
		m_el[i].deSerializeFloat(dataIn.m_el[i]);
}

SIMD_FORCE_INLINE void btMatrix3x3::deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn)
{
	for (int i = 0; i < 3; i++)
		m_el[i].deSerializeDouble(dataIn.m_el[i]);
}

#endif  //BT_MATRIX3x3_H