1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
|
/**
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2019 Google Inc. http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Copyright (c) 2016 Theodore Gast, Chuyuan Fu, Chenfanfu Jiang, Joseph Teran
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
If the code is used in an article, the following paper shall be cited:
@techreport{qrsvd:2016,
title={Implicit-shifted Symmetric QR Singular Value Decomposition of 3x3 Matrices},
author={Gast, Theodore and Fu, Chuyuan and Jiang, Chenfanfu and Teran, Joseph},
year={2016},
institution={University of California Los Angeles}
}
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
**/
#ifndef btImplicitQRSVD_h
#define btImplicitQRSVD_h
#include "btMatrix3x3.h"
class btMatrix2x2
{
public:
btScalar m_00, m_01, m_10, m_11;
btMatrix2x2(): m_00(0), m_10(0), m_01(0), m_11(0)
{
}
btMatrix2x2(const btMatrix2x2& other): m_00(other.m_00),m_01(other.m_01),m_10(other.m_10),m_11(other.m_11)
{}
btScalar& operator()(int i, int j)
{
if (i == 0 && j == 0)
return m_00;
if (i == 1 && j == 0)
return m_10;
if (i == 0 && j == 1)
return m_01;
if (i == 1 && j == 1)
return m_11;
btAssert(false);
return m_00;
}
const btScalar& operator()(int i, int j) const
{
if (i == 0 && j == 0)
return m_00;
if (i == 1 && j == 0)
return m_10;
if (i == 0 && j == 1)
return m_01;
if (i == 1 && j == 1)
return m_11;
btAssert(false);
return m_00;
}
void setIdentity()
{
m_00 = 1;
m_11 = 1;
m_01 = 0;
m_10 = 0;
}
};
static inline btScalar copySign(btScalar x, btScalar y) {
if ((x < 0 && y > 0) || (x > 0 && y < 0))
return -x;
return x;
}
/**
Class for givens rotation.
Row rotation G*A corresponds to something like
c -s 0
( s c 0 ) A
0 0 1
Column rotation A G' corresponds to something like
c -s 0
A ( s c 0 )
0 0 1
c and s are always computed so that
( c -s ) ( a ) = ( * )
s c b ( 0 )
Assume rowi<rowk.
*/
class GivensRotation {
public:
int rowi;
int rowk;
btScalar c;
btScalar s;
inline GivensRotation(int rowi_in, int rowk_in)
: rowi(rowi_in)
, rowk(rowk_in)
, c(1)
, s(0)
{
}
inline GivensRotation(btScalar a, btScalar b, int rowi_in, int rowk_in)
: rowi(rowi_in)
, rowk(rowk_in)
{
compute(a, b);
}
~GivensRotation() {}
inline void transposeInPlace()
{
s = -s;
}
/**
Compute c and s from a and b so that
( c -s ) ( a ) = ( * )
s c b ( 0 )
*/
inline void compute(const btScalar a, const btScalar b)
{
btScalar d = a * a + b * b;
c = 1;
s = 0;
if (d > SIMD_EPSILON) {
btScalar sqrtd = btSqrt(d);
if (sqrtd>SIMD_EPSILON)
{
btScalar t = btScalar(1.0)/sqrtd;
c = a * t;
s = -b * t;
}
}
}
/**
This function computes c and s so that
( c -s ) ( a ) = ( 0 )
s c b ( * )
*/
inline void computeUnconventional(const btScalar a, const btScalar b)
{
btScalar d = a * a + b * b;
c = 0;
s = 1;
if (d > SIMD_EPSILON) {
btScalar t = btScalar(1.0)/btSqrt(d);
s = a * t;
c = b * t;
}
}
/**
Fill the R with the entries of this rotation
*/
inline void fill(const btMatrix3x3& R) const
{
btMatrix3x3& A = const_cast<btMatrix3x3&>(R);
A.setIdentity();
A[rowi][rowi] = c;
A[rowk][rowi] = -s;
A[rowi][rowk] = s;
A[rowk][rowk] = c;
}
inline void fill(const btMatrix2x2& R) const
{
btMatrix2x2& A = const_cast<btMatrix2x2&>(R);
A(rowi,rowi) = c;
A(rowk,rowi) = -s;
A(rowi,rowk) = s;
A(rowk,rowk) = c;
}
/**
This function does something like
c -s 0
( s c 0 ) A -> A
0 0 1
It only affects row i and row k of A.
*/
inline void rowRotation(btMatrix3x3& A) const
{
for (int j = 0; j < 3; j++) {
btScalar tau1 = A[rowi][j];
btScalar tau2 = A[rowk][j];
A[rowi][j] = c * tau1 - s * tau2;
A[rowk][j] = s * tau1 + c * tau2;
}
}
inline void rowRotation(btMatrix2x2& A) const
{
for (int j = 0; j < 2; j++) {
btScalar tau1 = A(rowi,j);
btScalar tau2 = A(rowk,j);
A(rowi,j) = c * tau1 - s * tau2;
A(rowk,j) = s * tau1 + c * tau2;
}
}
/**
This function does something like
c s 0
A ( -s c 0 ) -> A
0 0 1
It only affects column i and column k of A.
*/
inline void columnRotation(btMatrix3x3& A) const
{
for (int j = 0; j < 3; j++) {
btScalar tau1 = A[j][rowi];
btScalar tau2 = A[j][rowk];
A[j][rowi] = c * tau1 - s * tau2;
A[j][rowk] = s * tau1 + c * tau2;
}
}
inline void columnRotation(btMatrix2x2& A) const
{
for (int j = 0; j < 2; j++) {
btScalar tau1 = A(j,rowi);
btScalar tau2 = A(j,rowk);
A(j,rowi) = c * tau1 - s * tau2;
A(j,rowk) = s * tau1 + c * tau2;
}
}
/**
Multiply givens must be for same row and column
**/
inline void operator*=(const GivensRotation& A)
{
btScalar new_c = c * A.c - s * A.s;
btScalar new_s = s * A.c + c * A.s;
c = new_c;
s = new_s;
}
/**
Multiply givens must be for same row and column
**/
inline GivensRotation operator*(const GivensRotation& A) const
{
GivensRotation r(*this);
r *= A;
return r;
}
};
/**
\brief zero chasing the 3X3 matrix to bidiagonal form
original form of H: x x 0
x x x
0 0 x
after zero chase:
x x 0
0 x x
0 0 x
*/
inline void zeroChase(btMatrix3x3& H, btMatrix3x3& U, btMatrix3x3& V)
{
/**
Reduce H to of form
x x +
0 x x
0 0 x
*/
GivensRotation r1(H[0][0], H[1][0], 0, 1);
/**
Reduce H to of form
x x 0
0 x x
0 + x
Can calculate r2 without multiplying by r1 since both entries are in first two
rows thus no need to divide by sqrt(a^2+b^2)
*/
GivensRotation r2(1, 2);
if (H[1][0] != 0)
r2.compute(H[0][0] * H[0][1] + H[1][0] * H[1][1], H[0][0] * H[0][2] + H[1][0] * H[1][2]);
else
r2.compute(H[0][1], H[0][2]);
r1.rowRotation(H);
/* GivensRotation<T> r2(H(0, 1), H(0, 2), 1, 2); */
r2.columnRotation(H);
r2.columnRotation(V);
/**
Reduce H to of form
x x 0
0 x x
0 0 x
*/
GivensRotation r3(H[1][1], H[2][1], 1, 2);
r3.rowRotation(H);
// Save this till end for better cache coherency
// r1.rowRotation(u_transpose);
// r3.rowRotation(u_transpose);
r1.columnRotation(U);
r3.columnRotation(U);
}
/**
\brief make a 3X3 matrix to upper bidiagonal form
original form of H: x x x
x x x
x x x
after zero chase:
x x 0
0 x x
0 0 x
*/
inline void makeUpperBidiag(btMatrix3x3& H, btMatrix3x3& U, btMatrix3x3& V)
{
U.setIdentity();
V.setIdentity();
/**
Reduce H to of form
x x x
x x x
0 x x
*/
GivensRotation r(H[1][0], H[2][0], 1, 2);
r.rowRotation(H);
// r.rowRotation(u_transpose);
r.columnRotation(U);
// zeroChase(H, u_transpose, V);
zeroChase(H, U, V);
}
/**
\brief make a 3X3 matrix to lambda shape
original form of H: x x x
* x x x
* x x x
after :
* x 0 0
* x x 0
* x 0 x
*/
inline void makeLambdaShape(btMatrix3x3& H, btMatrix3x3& U, btMatrix3x3& V)
{
U.setIdentity();
V.setIdentity();
/**
Reduce H to of form
* x x 0
* x x x
* x x x
*/
GivensRotation r1(H[0][1], H[0][2], 1, 2);
r1.columnRotation(H);
r1.columnRotation(V);
/**
Reduce H to of form
* x x 0
* x x 0
* x x x
*/
r1.computeUnconventional(H[1][2], H[2][2]);
r1.rowRotation(H);
r1.columnRotation(U);
/**
Reduce H to of form
* x x 0
* x x 0
* x 0 x
*/
GivensRotation r2(H[2][0], H[2][1], 0, 1);
r2.columnRotation(H);
r2.columnRotation(V);
/**
Reduce H to of form
* x 0 0
* x x 0
* x 0 x
*/
r2.computeUnconventional(H[0][1], H[1][1]);
r2.rowRotation(H);
r2.columnRotation(U);
}
/**
\brief 2x2 polar decomposition.
\param[in] A matrix.
\param[out] R Robustly a rotation matrix.
\param[out] S_Sym Symmetric. Whole matrix is stored
Polar guarantees negative sign is on the small magnitude singular value.
S is guaranteed to be the closest one to identity.
R is guaranteed to be the closest rotation to A.
*/
inline void polarDecomposition(const btMatrix2x2& A,
GivensRotation& R,
const btMatrix2x2& S_Sym)
{
btScalar a = (A(0, 0) + A(1, 1)), b = (A(1, 0) - A(0, 1));
btScalar denominator = btSqrt(a*a+b*b);
R.c = (btScalar)1;
R.s = (btScalar)0;
if (denominator > SIMD_EPSILON) {
/*
No need to use a tolerance here because x(0) and x(1) always have
smaller magnitude then denominator, therefore overflow never happens.
In Bullet, we use a tolerance anyway.
*/
R.c = a / denominator;
R.s = -b / denominator;
}
btMatrix2x2& S = const_cast<btMatrix2x2&>(S_Sym);
S = A;
R.rowRotation(S);
}
inline void polarDecomposition(const btMatrix2x2& A,
const btMatrix2x2& R,
const btMatrix2x2& S_Sym)
{
GivensRotation r(0, 1);
polarDecomposition(A, r, S_Sym);
r.fill(R);
}
/**
\brief 2x2 SVD (singular value decomposition) A=USV'
\param[in] A Input matrix.
\param[out] U Robustly a rotation matrix in Givens form
\param[out] Sigma matrix of singular values sorted with decreasing magnitude. The second one can be negative.
\param[out] V Robustly a rotation matrix in Givens form
*/
inline void singularValueDecomposition(
const btMatrix2x2& A,
GivensRotation& U,
const btMatrix2x2& Sigma,
GivensRotation& V,
const btScalar tol = 64 * std::numeric_limits<btScalar>::epsilon())
{
btMatrix2x2& sigma = const_cast<btMatrix2x2&>(Sigma);
sigma.setIdentity();
btMatrix2x2 S_Sym;
polarDecomposition(A, U, S_Sym);
btScalar cosine, sine;
btScalar x = S_Sym(0, 0);
btScalar y = S_Sym(0, 1);
btScalar z = S_Sym(1, 1);
if (y == 0) {
// S is already diagonal
cosine = 1;
sine = 0;
sigma(0,0) = x;
sigma(1,1) = z;
}
else {
btScalar tau = 0.5 * (x - z);
btScalar val = tau * tau + y * y;
if (val > SIMD_EPSILON)
{
btScalar w = btSqrt(val);
// w > y > 0
btScalar t;
if (tau > 0) {
// tau + w > w > y > 0 ==> division is safe
t = y / (tau + w);
}
else {
// tau - w < -w < -y < 0 ==> division is safe
t = y / (tau - w);
}
cosine = btScalar(1) / btSqrt(t * t + btScalar(1));
sine = -t * cosine;
/*
V = [cosine -sine; sine cosine]
Sigma = V'SV. Only compute the diagonals for efficiency.
Also utilize symmetry of S and don't form V yet.
*/
btScalar c2 = cosine * cosine;
btScalar csy = 2 * cosine * sine * y;
btScalar s2 = sine * sine;
sigma(0,0) = c2 * x - csy + s2 * z;
sigma(1,1) = s2 * x + csy + c2 * z;
} else
{
cosine = 1;
sine = 0;
sigma(0,0) = x;
sigma(1,1) = z;
}
}
// Sorting
// Polar already guarantees negative sign is on the small magnitude singular value.
if (sigma(0,0) < sigma(1,1)) {
std::swap(sigma(0,0), sigma(1,1));
V.c = -sine;
V.s = cosine;
}
else {
V.c = cosine;
V.s = sine;
}
U *= V;
}
/**
\brief 2x2 SVD (singular value decomposition) A=USV'
\param[in] A Input matrix.
\param[out] U Robustly a rotation matrix.
\param[out] Sigma Vector of singular values sorted with decreasing magnitude. The second one can be negative.
\param[out] V Robustly a rotation matrix.
*/
inline void singularValueDecomposition(
const btMatrix2x2& A,
const btMatrix2x2& U,
const btMatrix2x2& Sigma,
const btMatrix2x2& V,
const btScalar tol = 64 * std::numeric_limits<btScalar>::epsilon())
{
GivensRotation gv(0, 1);
GivensRotation gu(0, 1);
singularValueDecomposition(A, gu, Sigma, gv);
gu.fill(U);
gv.fill(V);
}
/**
\brief compute wilkinsonShift of the block
a1 b1
b1 a2
based on the wilkinsonShift formula
mu = c + d - sign (d) \ sqrt (d*d + b*b), where d = (a-c)/2
*/
inline btScalar wilkinsonShift(const btScalar a1, const btScalar b1, const btScalar a2)
{
btScalar d = (btScalar)0.5 * (a1 - a2);
btScalar bs = b1 * b1;
btScalar val = d * d + bs;
if (val>SIMD_EPSILON)
{
btScalar denom = btFabs(d) + btSqrt(val);
btScalar mu = a2 - copySign(bs / (denom), d);
// T mu = a2 - bs / ( d + sign_d*sqrt (d*d + bs));
return mu;
}
return a2;
}
/**
\brief Helper function of 3X3 SVD for processing 2X2 SVD
*/
template <int t>
inline void process(btMatrix3x3& B, btMatrix3x3& U, btVector3& sigma, btMatrix3x3& V)
{
int other = (t == 1) ? 0 : 2;
GivensRotation u(0, 1);
GivensRotation v(0, 1);
sigma[other] = B[other][other];
btMatrix2x2 B_sub, sigma_sub;
if (t == 0)
{
B_sub.m_00 = B[0][0];
B_sub.m_10 = B[1][0];
B_sub.m_01 = B[0][1];
B_sub.m_11 = B[1][1];
sigma_sub.m_00 = sigma[0];
sigma_sub.m_11 = sigma[1];
// singularValueDecomposition(B.template block<2, 2>(t, t), u, sigma.template block<2, 1>(t, 0), v);
singularValueDecomposition(B_sub, u, sigma_sub, v);
B[0][0] = B_sub.m_00;
B[1][0] = B_sub.m_10;
B[0][1] = B_sub.m_01;
B[1][1] = B_sub.m_11;
sigma[0] = sigma_sub.m_00;
sigma[1] = sigma_sub.m_11;
}
else
{
B_sub.m_00 = B[1][1];
B_sub.m_10 = B[2][1];
B_sub.m_01 = B[1][2];
B_sub.m_11 = B[2][2];
sigma_sub.m_00 = sigma[1];
sigma_sub.m_11 = sigma[2];
// singularValueDecomposition(B.template block<2, 2>(t, t), u, sigma.template block<2, 1>(t, 0), v);
singularValueDecomposition(B_sub, u, sigma_sub, v);
B[1][1] = B_sub.m_00;
B[2][1] = B_sub.m_10;
B[1][2] = B_sub.m_01;
B[2][2] = B_sub.m_11;
sigma[1] = sigma_sub.m_00;
sigma[2] = sigma_sub.m_11;
}
u.rowi += t;
u.rowk += t;
v.rowi += t;
v.rowk += t;
u.columnRotation(U);
v.columnRotation(V);
}
/**
\brief Helper function of 3X3 SVD for flipping signs due to flipping signs of sigma
*/
inline void flipSign(int i, btMatrix3x3& U, btVector3& sigma)
{
sigma[i] = -sigma[i];
U[0][i] = -U[0][i];
U[1][i] = -U[1][i];
U[2][i] = -U[2][i];
}
inline void flipSign(int i, btMatrix3x3& U)
{
U[0][i] = -U[0][i];
U[1][i] = -U[1][i];
U[2][i] = -U[2][i];
}
inline void swapCol(btMatrix3x3& A, int i, int j)
{
for (int d = 0; d < 3; ++d)
std::swap(A[d][i], A[d][j]);
}
/**
\brief Helper function of 3X3 SVD for sorting singular values
*/
inline void sort(btMatrix3x3& U, btVector3& sigma, btMatrix3x3& V, int t)
{
if (t == 0)
{
// Case: sigma(0) > |sigma(1)| >= |sigma(2)|
if (btFabs(sigma[1]) >= btFabs(sigma[2])) {
if (sigma[1] < 0) {
flipSign(1, U, sigma);
flipSign(2, U, sigma);
}
return;
}
//fix sign of sigma for both cases
if (sigma[2] < 0) {
flipSign(1, U, sigma);
flipSign(2, U, sigma);
}
//swap sigma(1) and sigma(2) for both cases
std::swap(sigma[1], sigma[2]);
// swap the col 1 and col 2 for U,V
swapCol(U,1,2);
swapCol(V,1,2);
// Case: |sigma(2)| >= sigma(0) > |simga(1)|
if (sigma[1] > sigma[0]) {
std::swap(sigma[0], sigma[1]);
swapCol(U,0,1);
swapCol(V,0,1);
}
// Case: sigma(0) >= |sigma(2)| > |simga(1)|
else {
flipSign(2, U);
flipSign(2, V);
}
}
else if (t == 1)
{
// Case: |sigma(0)| >= sigma(1) > |sigma(2)|
if (btFabs(sigma[0]) >= sigma[1]) {
if (sigma[0] < 0) {
flipSign(0, U, sigma);
flipSign(2, U, sigma);
}
return;
}
//swap sigma(0) and sigma(1) for both cases
std::swap(sigma[0], sigma[1]);
swapCol(U, 0, 1);
swapCol(V, 0, 1);
// Case: sigma(1) > |sigma(2)| >= |sigma(0)|
if (btFabs(sigma[1]) < btFabs(sigma[2])) {
std::swap(sigma[1], sigma[2]);
swapCol(U, 1, 2);
swapCol(V, 1, 2);
}
// Case: sigma(1) >= |sigma(0)| > |sigma(2)|
else {
flipSign(1, U);
flipSign(1, V);
}
// fix sign for both cases
if (sigma[1] < 0) {
flipSign(1, U, sigma);
flipSign(2, U, sigma);
}
}
}
/**
\brief 3X3 SVD (singular value decomposition) A=USV'
\param[in] A Input matrix.
\param[out] U is a rotation matrix.
\param[out] sigma Diagonal matrix, sorted with decreasing magnitude. The third one can be negative.
\param[out] V is a rotation matrix.
*/
inline int singularValueDecomposition(const btMatrix3x3& A,
btMatrix3x3& U,
btVector3& sigma,
btMatrix3x3& V,
btScalar tol = 128*std::numeric_limits<btScalar>::epsilon())
{
using std::fabs;
btMatrix3x3 B = A;
U.setIdentity();
V.setIdentity();
makeUpperBidiag(B, U, V);
int count = 0;
btScalar mu = (btScalar)0;
GivensRotation r(0, 1);
btScalar alpha_1 = B[0][0];
btScalar beta_1 = B[0][1];
btScalar alpha_2 = B[1][1];
btScalar alpha_3 = B[2][2];
btScalar beta_2 = B[1][2];
btScalar gamma_1 = alpha_1 * beta_1;
btScalar gamma_2 = alpha_2 * beta_2;
btScalar val = alpha_1 * alpha_1 + alpha_2 * alpha_2 + alpha_3 * alpha_3 + beta_1 * beta_1 + beta_2 * beta_2;
if (val > SIMD_EPSILON)
{
tol *= btMax((btScalar)0.5 * btSqrt(val), (btScalar)1);
}
/**
Do implicit shift QR until A^T A is block diagonal
*/
int max_count = 100;
while (btFabs(beta_2) > tol && btFabs(beta_1) > tol
&& btFabs(alpha_1) > tol && btFabs(alpha_2) > tol
&& btFabs(alpha_3) > tol
&& count < max_count) {
mu = wilkinsonShift(alpha_2 * alpha_2 + beta_1 * beta_1, gamma_2, alpha_3 * alpha_3 + beta_2 * beta_2);
r.compute(alpha_1 * alpha_1 - mu, gamma_1);
r.columnRotation(B);
r.columnRotation(V);
zeroChase(B, U, V);
alpha_1 = B[0][0];
beta_1 = B[0][1];
alpha_2 = B[1][1];
alpha_3 = B[2][2];
beta_2 = B[1][2];
gamma_1 = alpha_1 * beta_1;
gamma_2 = alpha_2 * beta_2;
count++;
}
/**
Handle the cases of one of the alphas and betas being 0
Sorted by ease of handling and then frequency
of occurrence
If B is of form
x x 0
0 x 0
0 0 x
*/
if (btFabs(beta_2) <= tol) {
process<0>(B, U, sigma, V);
sort(U, sigma, V,0);
}
/**
If B is of form
x 0 0
0 x x
0 0 x
*/
else if (btFabs(beta_1) <= tol) {
process<1>(B, U, sigma, V);
sort(U, sigma, V,1);
}
/**
If B is of form
x x 0
0 0 x
0 0 x
*/
else if (btFabs(alpha_2) <= tol) {
/**
Reduce B to
x x 0
0 0 0
0 0 x
*/
GivensRotation r1(1, 2);
r1.computeUnconventional(B[1][2], B[2][2]);
r1.rowRotation(B);
r1.columnRotation(U);
process<0>(B, U, sigma, V);
sort(U, sigma, V, 0);
}
/**
If B is of form
x x 0
0 x x
0 0 0
*/
else if (btFabs(alpha_3) <= tol) {
/**
Reduce B to
x x +
0 x 0
0 0 0
*/
GivensRotation r1(1, 2);
r1.compute(B[1][1], B[1][2]);
r1.columnRotation(B);
r1.columnRotation(V);
/**
Reduce B to
x x 0
+ x 0
0 0 0
*/
GivensRotation r2(0, 2);
r2.compute(B[0][0], B[0][2]);
r2.columnRotation(B);
r2.columnRotation(V);
process<0>(B, U, sigma, V);
sort(U, sigma, V, 0);
}
/**
If B is of form
0 x 0
0 x x
0 0 x
*/
else if (btFabs(alpha_1) <= tol) {
/**
Reduce B to
0 0 +
0 x x
0 0 x
*/
GivensRotation r1(0, 1);
r1.computeUnconventional(B[0][1], B[1][1]);
r1.rowRotation(B);
r1.columnRotation(U);
/**
Reduce B to
0 0 0
0 x x
0 + x
*/
GivensRotation r2(0, 2);
r2.computeUnconventional(B[0][2], B[2][2]);
r2.rowRotation(B);
r2.columnRotation(U);
process<1>(B, U, sigma, V);
sort(U, sigma, V, 1);
}
return count;
}
#endif /* btImplicitQRSVD_h */
|