1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btGeometryUtil.h"
/*
Make sure this dummy function never changes so that it
can be used by probes that are checking whether the
library is actually installed.
*/
extern "C"
{
void btBulletMathProbe();
void btBulletMathProbe() {}
}
bool btGeometryUtil::isPointInsidePlanes(const btAlignedObjectArray<btVector3>& planeEquations, const btVector3& point, btScalar margin)
{
int numbrushes = planeEquations.size();
for (int i = 0; i < numbrushes; i++)
{
const btVector3& N1 = planeEquations[i];
btScalar dist = btScalar(N1.dot(point)) + btScalar(N1[3]) - margin;
if (dist > btScalar(0.))
{
return false;
}
}
return true;
}
bool btGeometryUtil::areVerticesBehindPlane(const btVector3& planeNormal, const btAlignedObjectArray<btVector3>& vertices, btScalar margin)
{
int numvertices = vertices.size();
for (int i = 0; i < numvertices; i++)
{
const btVector3& N1 = vertices[i];
btScalar dist = btScalar(planeNormal.dot(N1)) + btScalar(planeNormal[3]) - margin;
if (dist > btScalar(0.))
{
return false;
}
}
return true;
}
bool notExist(const btVector3& planeEquation, const btAlignedObjectArray<btVector3>& planeEquations);
bool notExist(const btVector3& planeEquation, const btAlignedObjectArray<btVector3>& planeEquations)
{
int numbrushes = planeEquations.size();
for (int i = 0; i < numbrushes; i++)
{
const btVector3& N1 = planeEquations[i];
if (planeEquation.dot(N1) > btScalar(0.999))
{
return false;
}
}
return true;
}
void btGeometryUtil::getPlaneEquationsFromVertices(btAlignedObjectArray<btVector3>& vertices, btAlignedObjectArray<btVector3>& planeEquationsOut)
{
const int numvertices = vertices.size();
// brute force:
for (int i = 0; i < numvertices; i++)
{
const btVector3& N1 = vertices[i];
for (int j = i + 1; j < numvertices; j++)
{
const btVector3& N2 = vertices[j];
for (int k = j + 1; k < numvertices; k++)
{
const btVector3& N3 = vertices[k];
btVector3 planeEquation, edge0, edge1;
edge0 = N2 - N1;
edge1 = N3 - N1;
btScalar normalSign = btScalar(1.);
for (int ww = 0; ww < 2; ww++)
{
planeEquation = normalSign * edge0.cross(edge1);
if (planeEquation.length2() > btScalar(0.0001))
{
planeEquation.normalize();
if (notExist(planeEquation, planeEquationsOut))
{
planeEquation[3] = -planeEquation.dot(N1);
//check if inside, and replace supportingVertexOut if needed
if (areVerticesBehindPlane(planeEquation, vertices, btScalar(0.01)))
{
planeEquationsOut.push_back(planeEquation);
}
}
}
normalSign = btScalar(-1.);
}
}
}
}
}
void btGeometryUtil::getVerticesFromPlaneEquations(const btAlignedObjectArray<btVector3>& planeEquations, btAlignedObjectArray<btVector3>& verticesOut)
{
const int numbrushes = planeEquations.size();
// brute force:
for (int i = 0; i < numbrushes; i++)
{
const btVector3& N1 = planeEquations[i];
for (int j = i + 1; j < numbrushes; j++)
{
const btVector3& N2 = planeEquations[j];
for (int k = j + 1; k < numbrushes; k++)
{
const btVector3& N3 = planeEquations[k];
btVector3 n2n3;
n2n3 = N2.cross(N3);
btVector3 n3n1;
n3n1 = N3.cross(N1);
btVector3 n1n2;
n1n2 = N1.cross(N2);
if ((n2n3.length2() > btScalar(0.0001)) &&
(n3n1.length2() > btScalar(0.0001)) &&
(n1n2.length2() > btScalar(0.0001)))
{
//point P out of 3 plane equations:
// d1 ( N2 * N3 ) + d2 ( N3 * N1 ) + d3 ( N1 * N2 )
//P = -------------------------------------------------------------------------
// N1 . ( N2 * N3 )
btScalar quotient = (N1.dot(n2n3));
if (btFabs(quotient) > btScalar(0.000001))
{
quotient = btScalar(-1.) / quotient;
n2n3 *= N1[3];
n3n1 *= N2[3];
n1n2 *= N3[3];
btVector3 potentialVertex = n2n3;
potentialVertex += n3n1;
potentialVertex += n1n2;
potentialVertex *= quotient;
//check if inside, and replace supportingVertexOut if needed
if (isPointInsidePlanes(planeEquations, potentialVertex, btScalar(0.01)))
{
verticesOut.push_back(potentialVertex);
}
}
}
}
}
}
}
|