summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/LinearMath/btConvexHull.cpp
blob: e7de2a3694c4e1c4e618cbc948808803bd7b06ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
/*
Stan Melax Convex Hull Computation
Copyright (c) 2003-2006 Stan Melax http://www.melax.com/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#include <string.h>

#include "btConvexHull.h"
#include "btAlignedObjectArray.h"
#include "btMinMax.h"
#include "btVector3.h"

//----------------------------------

class int3
{
public:
	int x, y, z;
	int3(){};
	int3(int _x, int _y, int _z)
	{
		x = _x;
		y = _y;
		z = _z;
	}
	const int &operator[](int i) const { return (&x)[i]; }
	int &operator[](int i) { return (&x)[i]; }
};

//------- btPlane ----------

inline btPlane PlaneFlip(const btPlane &plane) { return btPlane(-plane.normal, -plane.dist); }
inline int operator==(const btPlane &a, const btPlane &b) { return (a.normal == b.normal && a.dist == b.dist); }
inline int coplanar(const btPlane &a, const btPlane &b) { return (a == b || a == PlaneFlip(b)); }

//--------- Utility Functions ------

btVector3 PlaneLineIntersection(const btPlane &plane, const btVector3 &p0, const btVector3 &p1);
btVector3 PlaneProject(const btPlane &plane, const btVector3 &point);

btVector3 ThreePlaneIntersection(const btPlane &p0, const btPlane &p1, const btPlane &p2);
btVector3 ThreePlaneIntersection(const btPlane &p0, const btPlane &p1, const btPlane &p2)
{
	btVector3 N1 = p0.normal;
	btVector3 N2 = p1.normal;
	btVector3 N3 = p2.normal;

	btVector3 n2n3;
	n2n3 = N2.cross(N3);
	btVector3 n3n1;
	n3n1 = N3.cross(N1);
	btVector3 n1n2;
	n1n2 = N1.cross(N2);

	btScalar quotient = (N1.dot(n2n3));

	btAssert(btFabs(quotient) > btScalar(0.000001));

	quotient = btScalar(-1.) / quotient;
	n2n3 *= p0.dist;
	n3n1 *= p1.dist;
	n1n2 *= p2.dist;
	btVector3 potentialVertex = n2n3;
	potentialVertex += n3n1;
	potentialVertex += n1n2;
	potentialVertex *= quotient;

	btVector3 result(potentialVertex.getX(), potentialVertex.getY(), potentialVertex.getZ());
	return result;
}

btScalar DistanceBetweenLines(const btVector3 &ustart, const btVector3 &udir, const btVector3 &vstart, const btVector3 &vdir, btVector3 *upoint = NULL, btVector3 *vpoint = NULL);
btVector3 TriNormal(const btVector3 &v0, const btVector3 &v1, const btVector3 &v2);
btVector3 NormalOf(const btVector3 *vert, const int n);

btVector3 PlaneLineIntersection(const btPlane &plane, const btVector3 &p0, const btVector3 &p1)
{
	// returns the point where the line p0-p1 intersects the plane n&d
	btVector3 dif;
	dif = p1 - p0;
	btScalar dn = btDot(plane.normal, dif);
	btScalar t = -(plane.dist + btDot(plane.normal, p0)) / dn;
	return p0 + (dif * t);
}

btVector3 PlaneProject(const btPlane &plane, const btVector3 &point)
{
	return point - plane.normal * (btDot(point, plane.normal) + plane.dist);
}

btVector3 TriNormal(const btVector3 &v0, const btVector3 &v1, const btVector3 &v2)
{
	// return the normal of the triangle
	// inscribed by v0, v1, and v2
	btVector3 cp = btCross(v1 - v0, v2 - v1);
	btScalar m = cp.length();
	if (m == 0) return btVector3(1, 0, 0);
	return cp * (btScalar(1.0) / m);
}

btScalar DistanceBetweenLines(const btVector3 &ustart, const btVector3 &udir, const btVector3 &vstart, const btVector3 &vdir, btVector3 *upoint, btVector3 *vpoint)
{
	btVector3 cp;
	cp = btCross(udir, vdir).normalized();

	btScalar distu = -btDot(cp, ustart);
	btScalar distv = -btDot(cp, vstart);
	btScalar dist = (btScalar)fabs(distu - distv);
	if (upoint)
	{
		btPlane plane;
		plane.normal = btCross(vdir, cp).normalized();
		plane.dist = -btDot(plane.normal, vstart);
		*upoint = PlaneLineIntersection(plane, ustart, ustart + udir);
	}
	if (vpoint)
	{
		btPlane plane;
		plane.normal = btCross(udir, cp).normalized();
		plane.dist = -btDot(plane.normal, ustart);
		*vpoint = PlaneLineIntersection(plane, vstart, vstart + vdir);
	}
	return dist;
}

#define COPLANAR (0)
#define UNDER (1)
#define OVER (2)
#define SPLIT (OVER | UNDER)
#define PAPERWIDTH (btScalar(0.001))

btScalar planetestepsilon = PAPERWIDTH;

typedef ConvexH::HalfEdge HalfEdge;

ConvexH::ConvexH(int vertices_size, int edges_size, int facets_size)
{
	vertices.resize(vertices_size);
	edges.resize(edges_size);
	facets.resize(facets_size);
}

int PlaneTest(const btPlane &p, const btVector3 &v);
int PlaneTest(const btPlane &p, const btVector3 &v)
{
	btScalar a = btDot(v, p.normal) + p.dist;
	int flag = (a > planetestepsilon) ? OVER : ((a < -planetestepsilon) ? UNDER : COPLANAR);
	return flag;
}

int SplitTest(ConvexH &convex, const btPlane &plane);
int SplitTest(ConvexH &convex, const btPlane &plane)
{
	int flag = 0;
	for (int i = 0; i < convex.vertices.size(); i++)
	{
		flag |= PlaneTest(plane, convex.vertices[i]);
	}
	return flag;
}

class VertFlag
{
public:
	unsigned char planetest;
	unsigned char junk;
	unsigned char undermap;
	unsigned char overmap;
};
class EdgeFlag
{
public:
	unsigned char planetest;
	unsigned char fixes;
	short undermap;
	short overmap;
};
class PlaneFlag
{
public:
	unsigned char undermap;
	unsigned char overmap;
};
class Coplanar
{
public:
	unsigned short ea;
	unsigned char v0;
	unsigned char v1;
};

template <class T>
int maxdirfiltered(const T *p, int count, const T &dir, btAlignedObjectArray<int> &allow)
{
	btAssert(count);
	int m = -1;
	for (int i = 0; i < count; i++)
		if (allow[i])
		{
			if (m == -1 || btDot(p[i], dir) > btDot(p[m], dir))
				m = i;
		}
	btAssert(m != -1);
	return m;
}

btVector3 orth(const btVector3 &v);
btVector3 orth(const btVector3 &v)
{
	btVector3 a = btCross(v, btVector3(0, 0, 1));
	btVector3 b = btCross(v, btVector3(0, 1, 0));
	if (a.length() > b.length())
	{
		return a.normalized();
	}
	else
	{
		return b.normalized();
	}
}

template <class T>
int maxdirsterid(const T *p, int count, const T &dir, btAlignedObjectArray<int> &allow)
{
	int m = -1;
	while (m == -1)
	{
		m = maxdirfiltered(p, count, dir, allow);
		if (allow[m] == 3) return m;
		T u = orth(dir);
		T v = btCross(u, dir);
		int ma = -1;
		for (btScalar x = btScalar(0.0); x <= btScalar(360.0); x += btScalar(45.0))
		{
			btScalar s = btSin(SIMD_RADS_PER_DEG * (x));
			btScalar c = btCos(SIMD_RADS_PER_DEG * (x));
			int mb = maxdirfiltered(p, count, dir + (u * s + v * c) * btScalar(0.025), allow);
			if (ma == m && mb == m)
			{
				allow[m] = 3;
				return m;
			}
			if (ma != -1 && ma != mb)  // Yuck - this is really ugly
			{
				int mc = ma;
				for (btScalar xx = x - btScalar(40.0); xx <= x; xx += btScalar(5.0))
				{
					btScalar s = btSin(SIMD_RADS_PER_DEG * (xx));
					btScalar c = btCos(SIMD_RADS_PER_DEG * (xx));
					int md = maxdirfiltered(p, count, dir + (u * s + v * c) * btScalar(0.025), allow);
					if (mc == m && md == m)
					{
						allow[m] = 3;
						return m;
					}
					mc = md;
				}
			}
			ma = mb;
		}
		allow[m] = 0;
		m = -1;
	}
	btAssert(0);
	return m;
}

int operator==(const int3 &a, const int3 &b);
int operator==(const int3 &a, const int3 &b)
{
	for (int i = 0; i < 3; i++)
	{
		if (a[i] != b[i]) return 0;
	}
	return 1;
}

int above(btVector3 *vertices, const int3 &t, const btVector3 &p, btScalar epsilon);
int above(btVector3 *vertices, const int3 &t, const btVector3 &p, btScalar epsilon)
{
	btVector3 n = TriNormal(vertices[t[0]], vertices[t[1]], vertices[t[2]]);
	return (btDot(n, p - vertices[t[0]]) > epsilon);  // EPSILON???
}
int hasedge(const int3 &t, int a, int b);
int hasedge(const int3 &t, int a, int b)
{
	for (int i = 0; i < 3; i++)
	{
		int i1 = (i + 1) % 3;
		if (t[i] == a && t[i1] == b) return 1;
	}
	return 0;
}
int hasvert(const int3 &t, int v);
int hasvert(const int3 &t, int v)
{
	return (t[0] == v || t[1] == v || t[2] == v);
}
int shareedge(const int3 &a, const int3 &b);
int shareedge(const int3 &a, const int3 &b)
{
	int i;
	for (i = 0; i < 3; i++)
	{
		int i1 = (i + 1) % 3;
		if (hasedge(a, b[i1], b[i])) return 1;
	}
	return 0;
}

class btHullTriangle;

class btHullTriangle : public int3
{
public:
	int3 n;
	int id;
	int vmax;
	btScalar rise;
	btHullTriangle(int a, int b, int c) : int3(a, b, c), n(-1, -1, -1)
	{
		vmax = -1;
		rise = btScalar(0.0);
	}
	~btHullTriangle()
	{
	}
	int &neib(int a, int b);
};

int &btHullTriangle::neib(int a, int b)
{
	static int er = -1;
	int i;
	for (i = 0; i < 3; i++)
	{
		int i1 = (i + 1) % 3;
		int i2 = (i + 2) % 3;
		if ((*this)[i] == a && (*this)[i1] == b) return n[i2];
		if ((*this)[i] == b && (*this)[i1] == a) return n[i2];
	}
	btAssert(0);
	return er;
}
void HullLibrary::b2bfix(btHullTriangle *s, btHullTriangle *t)
{
	int i;
	for (i = 0; i < 3; i++)
	{
		int i1 = (i + 1) % 3;
		int i2 = (i + 2) % 3;
		int a = (*s)[i1];
		int b = (*s)[i2];
		btAssert(m_tris[s->neib(a, b)]->neib(b, a) == s->id);
		btAssert(m_tris[t->neib(a, b)]->neib(b, a) == t->id);
		m_tris[s->neib(a, b)]->neib(b, a) = t->neib(b, a);
		m_tris[t->neib(b, a)]->neib(a, b) = s->neib(a, b);
	}
}

void HullLibrary::removeb2b(btHullTriangle *s, btHullTriangle *t)
{
	b2bfix(s, t);
	deAllocateTriangle(s);

	deAllocateTriangle(t);
}

void HullLibrary::checkit(btHullTriangle *t)
{
	(void)t;

	int i;
	btAssert(m_tris[t->id] == t);
	for (i = 0; i < 3; i++)
	{
		int i1 = (i + 1) % 3;
		int i2 = (i + 2) % 3;
		int a = (*t)[i1];
		int b = (*t)[i2];

		// release compile fix
		(void)i1;
		(void)i2;
		(void)a;
		(void)b;

		btAssert(a != b);
		btAssert(m_tris[t->n[i]]->neib(b, a) == t->id);
	}
}

btHullTriangle *HullLibrary::allocateTriangle(int a, int b, int c)
{
	void *mem = btAlignedAlloc(sizeof(btHullTriangle), 16);
	btHullTriangle *tr = new (mem) btHullTriangle(a, b, c);
	tr->id = m_tris.size();
	m_tris.push_back(tr);

	return tr;
}

void HullLibrary::deAllocateTriangle(btHullTriangle *tri)
{
	btAssert(m_tris[tri->id] == tri);
	m_tris[tri->id] = NULL;
	tri->~btHullTriangle();
	btAlignedFree(tri);
}

void HullLibrary::extrude(btHullTriangle *t0, int v)
{
	int3 t = *t0;
	int n = m_tris.size();
	btHullTriangle *ta = allocateTriangle(v, t[1], t[2]);
	ta->n = int3(t0->n[0], n + 1, n + 2);
	m_tris[t0->n[0]]->neib(t[1], t[2]) = n + 0;
	btHullTriangle *tb = allocateTriangle(v, t[2], t[0]);
	tb->n = int3(t0->n[1], n + 2, n + 0);
	m_tris[t0->n[1]]->neib(t[2], t[0]) = n + 1;
	btHullTriangle *tc = allocateTriangle(v, t[0], t[1]);
	tc->n = int3(t0->n[2], n + 0, n + 1);
	m_tris[t0->n[2]]->neib(t[0], t[1]) = n + 2;
	checkit(ta);
	checkit(tb);
	checkit(tc);
	if (hasvert(*m_tris[ta->n[0]], v)) removeb2b(ta, m_tris[ta->n[0]]);
	if (hasvert(*m_tris[tb->n[0]], v)) removeb2b(tb, m_tris[tb->n[0]]);
	if (hasvert(*m_tris[tc->n[0]], v)) removeb2b(tc, m_tris[tc->n[0]]);
	deAllocateTriangle(t0);
}

btHullTriangle *HullLibrary::extrudable(btScalar epsilon)
{
	int i;
	btHullTriangle *t = NULL;
	for (i = 0; i < m_tris.size(); i++)
	{
		if (!t || (m_tris[i] && t->rise < m_tris[i]->rise))
		{
			t = m_tris[i];
		}
	}
	return (t->rise > epsilon) ? t : NULL;
}

int4 HullLibrary::FindSimplex(btVector3 *verts, int verts_count, btAlignedObjectArray<int> &allow)
{
	btVector3 basis[3];
	basis[0] = btVector3(btScalar(0.01), btScalar(0.02), btScalar(1.0));
	int p0 = maxdirsterid(verts, verts_count, basis[0], allow);
	int p1 = maxdirsterid(verts, verts_count, -basis[0], allow);
	basis[0] = verts[p0] - verts[p1];
	if (p0 == p1 || basis[0] == btVector3(0, 0, 0))
		return int4(-1, -1, -1, -1);
	basis[1] = btCross(btVector3(btScalar(1), btScalar(0.02), btScalar(0)), basis[0]);
	basis[2] = btCross(btVector3(btScalar(-0.02), btScalar(1), btScalar(0)), basis[0]);
	if (basis[1].length() > basis[2].length())
	{
		basis[1].normalize();
	}
	else
	{
		basis[1] = basis[2];
		basis[1].normalize();
	}
	int p2 = maxdirsterid(verts, verts_count, basis[1], allow);
	if (p2 == p0 || p2 == p1)
	{
		p2 = maxdirsterid(verts, verts_count, -basis[1], allow);
	}
	if (p2 == p0 || p2 == p1)
		return int4(-1, -1, -1, -1);
	basis[1] = verts[p2] - verts[p0];
	basis[2] = btCross(basis[1], basis[0]).normalized();
	int p3 = maxdirsterid(verts, verts_count, basis[2], allow);
	if (p3 == p0 || p3 == p1 || p3 == p2) p3 = maxdirsterid(verts, verts_count, -basis[2], allow);
	if (p3 == p0 || p3 == p1 || p3 == p2)
		return int4(-1, -1, -1, -1);
	btAssert(!(p0 == p1 || p0 == p2 || p0 == p3 || p1 == p2 || p1 == p3 || p2 == p3));
	if (btDot(verts[p3] - verts[p0], btCross(verts[p1] - verts[p0], verts[p2] - verts[p0])) < 0)
	{
		btSwap(p2, p3);
	}
	return int4(p0, p1, p2, p3);
}

int HullLibrary::calchullgen(btVector3 *verts, int verts_count, int vlimit)
{
	if (verts_count < 4) return 0;
	if (vlimit == 0) vlimit = 1000000000;
	int j;
	btVector3 bmin(*verts), bmax(*verts);
	btAlignedObjectArray<int> isextreme;
	isextreme.reserve(verts_count);
	btAlignedObjectArray<int> allow;
	allow.reserve(verts_count);

	for (j = 0; j < verts_count; j++)
	{
		allow.push_back(1);
		isextreme.push_back(0);
		bmin.setMin(verts[j]);
		bmax.setMax(verts[j]);
	}
	btScalar epsilon = (bmax - bmin).length() * btScalar(0.001);
	btAssert(epsilon != 0.0);

	int4 p = FindSimplex(verts, verts_count, allow);
	if (p.x == -1) return 0;  // simplex failed

	btVector3 center = (verts[p[0]] + verts[p[1]] + verts[p[2]] + verts[p[3]]) / btScalar(4.0);  // a valid interior point
	btHullTriangle *t0 = allocateTriangle(p[2], p[3], p[1]);
	t0->n = int3(2, 3, 1);
	btHullTriangle *t1 = allocateTriangle(p[3], p[2], p[0]);
	t1->n = int3(3, 2, 0);
	btHullTriangle *t2 = allocateTriangle(p[0], p[1], p[3]);
	t2->n = int3(0, 1, 3);
	btHullTriangle *t3 = allocateTriangle(p[1], p[0], p[2]);
	t3->n = int3(1, 0, 2);
	isextreme[p[0]] = isextreme[p[1]] = isextreme[p[2]] = isextreme[p[3]] = 1;
	checkit(t0);
	checkit(t1);
	checkit(t2);
	checkit(t3);

	for (j = 0; j < m_tris.size(); j++)
	{
		btHullTriangle *t = m_tris[j];
		btAssert(t);
		btAssert(t->vmax < 0);
		btVector3 n = TriNormal(verts[(*t)[0]], verts[(*t)[1]], verts[(*t)[2]]);
		t->vmax = maxdirsterid(verts, verts_count, n, allow);
		t->rise = btDot(n, verts[t->vmax] - verts[(*t)[0]]);
	}
	btHullTriangle *te;
	vlimit -= 4;
	while (vlimit > 0 && ((te = extrudable(epsilon)) != 0))
	{
		//int3 ti=*te;
		int v = te->vmax;
		btAssert(v != -1);
		btAssert(!isextreme[v]);  // wtf we've already done this vertex
		isextreme[v] = 1;
		//if(v==p0 || v==p1 || v==p2 || v==p3) continue; // done these already
		j = m_tris.size();
		while (j--)
		{
			if (!m_tris[j]) continue;
			int3 t = *m_tris[j];
			if (above(verts, t, verts[v], btScalar(0.01) * epsilon))
			{
				extrude(m_tris[j], v);
			}
		}
		// now check for those degenerate cases where we have a flipped triangle or a really skinny triangle
		j = m_tris.size();
		while (j--)
		{
			if (!m_tris[j]) continue;
			if (!hasvert(*m_tris[j], v)) break;
			int3 nt = *m_tris[j];
			if (above(verts, nt, center, btScalar(0.01) * epsilon) || btCross(verts[nt[1]] - verts[nt[0]], verts[nt[2]] - verts[nt[1]]).length() < epsilon * epsilon * btScalar(0.1))
			{
				btHullTriangle *nb = m_tris[m_tris[j]->n[0]];
				btAssert(nb);
				btAssert(!hasvert(*nb, v));
				btAssert(nb->id < j);
				extrude(nb, v);
				j = m_tris.size();
			}
		}
		j = m_tris.size();
		while (j--)
		{
			btHullTriangle *t = m_tris[j];
			if (!t) continue;
			if (t->vmax >= 0) break;
			btVector3 n = TriNormal(verts[(*t)[0]], verts[(*t)[1]], verts[(*t)[2]]);
			t->vmax = maxdirsterid(verts, verts_count, n, allow);
			if (isextreme[t->vmax])
			{
				t->vmax = -1;  // already done that vertex - algorithm needs to be able to terminate.
			}
			else
			{
				t->rise = btDot(n, verts[t->vmax] - verts[(*t)[0]]);
			}
		}
		vlimit--;
	}
	return 1;
}

int HullLibrary::calchull(btVector3 *verts, int verts_count, TUIntArray &tris_out, int &tris_count, int vlimit)
{
	int rc = calchullgen(verts, verts_count, vlimit);
	if (!rc) return 0;
	btAlignedObjectArray<int> ts;
	int i;

	for (i = 0; i < m_tris.size(); i++)
	{
		if (m_tris[i])
		{
			for (int j = 0; j < 3; j++)
				ts.push_back((*m_tris[i])[j]);
			deAllocateTriangle(m_tris[i]);
		}
	}
	tris_count = ts.size() / 3;
	tris_out.resize(ts.size());

	for (i = 0; i < ts.size(); i++)
	{
		tris_out[i] = static_cast<unsigned int>(ts[i]);
	}
	m_tris.resize(0);

	return 1;
}

bool HullLibrary::ComputeHull(unsigned int vcount, const btVector3 *vertices, PHullResult &result, unsigned int vlimit)
{
	int tris_count;
	int ret = calchull((btVector3 *)vertices, (int)vcount, result.m_Indices, tris_count, static_cast<int>(vlimit));
	if (!ret) return false;
	result.mIndexCount = (unsigned int)(tris_count * 3);
	result.mFaceCount = (unsigned int)tris_count;
	result.mVertices = (btVector3 *)vertices;
	result.mVcount = (unsigned int)vcount;
	return true;
}

void ReleaseHull(PHullResult &result);
void ReleaseHull(PHullResult &result)
{
	if (result.m_Indices.size())
	{
		result.m_Indices.clear();
	}

	result.mVcount = 0;
	result.mIndexCount = 0;
	result.mVertices = 0;
}

//*********************************************************************
//*********************************************************************
//********  HullLib header
//*********************************************************************
//*********************************************************************

//*********************************************************************
//*********************************************************************
//********  HullLib implementation
//*********************************************************************
//*********************************************************************

HullError HullLibrary::CreateConvexHull(const HullDesc &desc,  // describes the input request
										HullResult &result)    // contains the resulst
{
	HullError ret = QE_FAIL;

	PHullResult hr;

	unsigned int vcount = desc.mVcount;
	if (vcount < 8) vcount = 8;

	btAlignedObjectArray<btVector3> vertexSource;
	vertexSource.resize(static_cast<int>(vcount));

	btVector3 scale;

	unsigned int ovcount;

	bool ok = CleanupVertices(desc.mVcount, desc.mVertices, desc.mVertexStride, ovcount, &vertexSource[0], desc.mNormalEpsilon, scale);  // normalize point cloud, remove duplicates!

	if (ok)
	{
		//		if ( 1 ) // scale vertices back to their original size.
		{
			for (unsigned int i = 0; i < ovcount; i++)
			{
				btVector3 &v = vertexSource[static_cast<int>(i)];
				v[0] *= scale[0];
				v[1] *= scale[1];
				v[2] *= scale[2];
			}
		}

		ok = ComputeHull(ovcount, &vertexSource[0], hr, desc.mMaxVertices);

		if (ok)
		{
			// re-index triangle mesh so it refers to only used vertices, rebuild a new vertex table.
			btAlignedObjectArray<btVector3> vertexScratch;
			vertexScratch.resize(static_cast<int>(hr.mVcount));

			BringOutYourDead(hr.mVertices, hr.mVcount, &vertexScratch[0], ovcount, &hr.m_Indices[0], hr.mIndexCount);

			ret = QE_OK;

			if (desc.HasHullFlag(QF_TRIANGLES))  // if he wants the results as triangle!
			{
				result.mPolygons = false;
				result.mNumOutputVertices = ovcount;
				result.m_OutputVertices.resize(static_cast<int>(ovcount));
				result.mNumFaces = hr.mFaceCount;
				result.mNumIndices = hr.mIndexCount;

				result.m_Indices.resize(static_cast<int>(hr.mIndexCount));

				memcpy(&result.m_OutputVertices[0], &vertexScratch[0], sizeof(btVector3) * ovcount);

				if (desc.HasHullFlag(QF_REVERSE_ORDER))
				{
					const unsigned int *source = &hr.m_Indices[0];
					unsigned int *dest = &result.m_Indices[0];

					for (unsigned int i = 0; i < hr.mFaceCount; i++)
					{
						dest[0] = source[2];
						dest[1] = source[1];
						dest[2] = source[0];
						dest += 3;
						source += 3;
					}
				}
				else
				{
					memcpy(&result.m_Indices[0], &hr.m_Indices[0], sizeof(unsigned int) * hr.mIndexCount);
				}
			}
			else
			{
				result.mPolygons = true;
				result.mNumOutputVertices = ovcount;
				result.m_OutputVertices.resize(static_cast<int>(ovcount));
				result.mNumFaces = hr.mFaceCount;
				result.mNumIndices = hr.mIndexCount + hr.mFaceCount;
				result.m_Indices.resize(static_cast<int>(result.mNumIndices));
				memcpy(&result.m_OutputVertices[0], &vertexScratch[0], sizeof(btVector3) * ovcount);

				//				if ( 1 )
				{
					const unsigned int *source = &hr.m_Indices[0];
					unsigned int *dest = &result.m_Indices[0];
					for (unsigned int i = 0; i < hr.mFaceCount; i++)
					{
						dest[0] = 3;
						if (desc.HasHullFlag(QF_REVERSE_ORDER))
						{
							dest[1] = source[2];
							dest[2] = source[1];
							dest[3] = source[0];
						}
						else
						{
							dest[1] = source[0];
							dest[2] = source[1];
							dest[3] = source[2];
						}

						dest += 4;
						source += 3;
					}
				}
			}
			ReleaseHull(hr);
		}
	}

	return ret;
}

HullError HullLibrary::ReleaseResult(HullResult &result)  // release memory allocated for this result, we are done with it.
{
	if (result.m_OutputVertices.size())
	{
		result.mNumOutputVertices = 0;
		result.m_OutputVertices.clear();
	}
	if (result.m_Indices.size())
	{
		result.mNumIndices = 0;
		result.m_Indices.clear();
	}
	return QE_OK;
}

static void addPoint(unsigned int &vcount, btVector3 *p, btScalar x, btScalar y, btScalar z)
{
	// XXX, might be broken
	btVector3 &dest = p[vcount];
	dest[0] = x;
	dest[1] = y;
	dest[2] = z;
	vcount++;
}

btScalar GetDist(btScalar px, btScalar py, btScalar pz, const btScalar *p2);
btScalar GetDist(btScalar px, btScalar py, btScalar pz, const btScalar *p2)
{
	btScalar dx = px - p2[0];
	btScalar dy = py - p2[1];
	btScalar dz = pz - p2[2];

	return dx * dx + dy * dy + dz * dz;
}

bool HullLibrary::CleanupVertices(unsigned int svcount,
								  const btVector3 *svertices,
								  unsigned int stride,
								  unsigned int &vcount,  // output number of vertices
								  btVector3 *vertices,   // location to store the results.
								  btScalar normalepsilon,
								  btVector3 &scale)
{
	if (svcount == 0) return false;

	m_vertexIndexMapping.resize(0);

#define EPSILON btScalar(0.000001) /* close enough to consider two btScalaring point numbers to be 'the same'. */

	vcount = 0;

	btScalar recip[3] = {0.f, 0.f, 0.f};

	if (scale)
	{
		scale[0] = 1;
		scale[1] = 1;
		scale[2] = 1;
	}

	btScalar bmin[3] = {FLT_MAX, FLT_MAX, FLT_MAX};
	btScalar bmax[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX};

	const char *vtx = (const char *)svertices;

	//	if ( 1 )
	{
		for (unsigned int i = 0; i < svcount; i++)
		{
			const btScalar *p = (const btScalar *)vtx;

			vtx += stride;

			for (int j = 0; j < 3; j++)
			{
				if (p[j] < bmin[j]) bmin[j] = p[j];
				if (p[j] > bmax[j]) bmax[j] = p[j];
			}
		}
	}

	btScalar dx = bmax[0] - bmin[0];
	btScalar dy = bmax[1] - bmin[1];
	btScalar dz = bmax[2] - bmin[2];

	btVector3 center;

	center[0] = dx * btScalar(0.5) + bmin[0];
	center[1] = dy * btScalar(0.5) + bmin[1];
	center[2] = dz * btScalar(0.5) + bmin[2];

	if (dx < EPSILON || dy < EPSILON || dz < EPSILON || svcount < 3)
	{
		btScalar len = FLT_MAX;

		if (dx > EPSILON && dx < len) len = dx;
		if (dy > EPSILON && dy < len) len = dy;
		if (dz > EPSILON && dz < len) len = dz;

		if (len == FLT_MAX)
		{
			dx = dy = dz = btScalar(0.01);  // one centimeter
		}
		else
		{
			if (dx < EPSILON) dx = len * btScalar(0.05);  // 1/5th the shortest non-zero edge.
			if (dy < EPSILON) dy = len * btScalar(0.05);
			if (dz < EPSILON) dz = len * btScalar(0.05);
		}

		btScalar x1 = center[0] - dx;
		btScalar x2 = center[0] + dx;

		btScalar y1 = center[1] - dy;
		btScalar y2 = center[1] + dy;

		btScalar z1 = center[2] - dz;
		btScalar z2 = center[2] + dz;

		addPoint(vcount, vertices, x1, y1, z1);
		addPoint(vcount, vertices, x2, y1, z1);
		addPoint(vcount, vertices, x2, y2, z1);
		addPoint(vcount, vertices, x1, y2, z1);
		addPoint(vcount, vertices, x1, y1, z2);
		addPoint(vcount, vertices, x2, y1, z2);
		addPoint(vcount, vertices, x2, y2, z2);
		addPoint(vcount, vertices, x1, y2, z2);

		return true;  // return cube
	}
	else
	{
		if (scale)
		{
			scale[0] = dx;
			scale[1] = dy;
			scale[2] = dz;

			recip[0] = 1 / dx;
			recip[1] = 1 / dy;
			recip[2] = 1 / dz;

			center[0] *= recip[0];
			center[1] *= recip[1];
			center[2] *= recip[2];
		}
	}

	vtx = (const char *)svertices;

	for (unsigned int i = 0; i < svcount; i++)
	{
		const btVector3 *p = (const btVector3 *)vtx;
		vtx += stride;

		btScalar px = p->getX();
		btScalar py = p->getY();
		btScalar pz = p->getZ();

		if (scale)
		{
			px = px * recip[0];  // normalize
			py = py * recip[1];  // normalize
			pz = pz * recip[2];  // normalize
		}

		//		if ( 1 )
		{
			unsigned int j;

			for (j = 0; j < vcount; j++)
			{
				/// XXX might be broken
				btVector3 &v = vertices[j];

				btScalar x = v[0];
				btScalar y = v[1];
				btScalar z = v[2];

				btScalar dx = btFabs(x - px);
				btScalar dy = btFabs(y - py);
				btScalar dz = btFabs(z - pz);

				if (dx < normalepsilon && dy < normalepsilon && dz < normalepsilon)
				{
					// ok, it is close enough to the old one
					// now let us see if it is further from the center of the point cloud than the one we already recorded.
					// in which case we keep this one instead.

					btScalar dist1 = GetDist(px, py, pz, center);
					btScalar dist2 = GetDist(v[0], v[1], v[2], center);

					if (dist1 > dist2)
					{
						v[0] = px;
						v[1] = py;
						v[2] = pz;
					}

					break;
				}
			}

			if (j == vcount)
			{
				btVector3 &dest = vertices[vcount];
				dest[0] = px;
				dest[1] = py;
				dest[2] = pz;
				vcount++;
			}
			m_vertexIndexMapping.push_back(j);
		}
	}

	// ok..now make sure we didn't prune so many vertices it is now invalid.
	//	if ( 1 )
	{
		btScalar bmin[3] = {FLT_MAX, FLT_MAX, FLT_MAX};
		btScalar bmax[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX};

		for (unsigned int i = 0; i < vcount; i++)
		{
			const btVector3 &p = vertices[i];
			for (int j = 0; j < 3; j++)
			{
				if (p[j] < bmin[j]) bmin[j] = p[j];
				if (p[j] > bmax[j]) bmax[j] = p[j];
			}
		}

		btScalar dx = bmax[0] - bmin[0];
		btScalar dy = bmax[1] - bmin[1];
		btScalar dz = bmax[2] - bmin[2];

		if (dx < EPSILON || dy < EPSILON || dz < EPSILON || vcount < 3)
		{
			btScalar cx = dx * btScalar(0.5) + bmin[0];
			btScalar cy = dy * btScalar(0.5) + bmin[1];
			btScalar cz = dz * btScalar(0.5) + bmin[2];

			btScalar len = FLT_MAX;

			if (dx >= EPSILON && dx < len) len = dx;
			if (dy >= EPSILON && dy < len) len = dy;
			if (dz >= EPSILON && dz < len) len = dz;

			if (len == FLT_MAX)
			{
				dx = dy = dz = btScalar(0.01);  // one centimeter
			}
			else
			{
				if (dx < EPSILON) dx = len * btScalar(0.05);  // 1/5th the shortest non-zero edge.
				if (dy < EPSILON) dy = len * btScalar(0.05);
				if (dz < EPSILON) dz = len * btScalar(0.05);
			}

			btScalar x1 = cx - dx;
			btScalar x2 = cx + dx;

			btScalar y1 = cy - dy;
			btScalar y2 = cy + dy;

			btScalar z1 = cz - dz;
			btScalar z2 = cz + dz;

			vcount = 0;  // add box

			addPoint(vcount, vertices, x1, y1, z1);
			addPoint(vcount, vertices, x2, y1, z1);
			addPoint(vcount, vertices, x2, y2, z1);
			addPoint(vcount, vertices, x1, y2, z1);
			addPoint(vcount, vertices, x1, y1, z2);
			addPoint(vcount, vertices, x2, y1, z2);
			addPoint(vcount, vertices, x2, y2, z2);
			addPoint(vcount, vertices, x1, y2, z2);

			return true;
		}
	}

	return true;
}

void HullLibrary::BringOutYourDead(const btVector3 *verts, unsigned int vcount, btVector3 *overts, unsigned int &ocount, unsigned int *indices, unsigned indexcount)
{
	btAlignedObjectArray<int> tmpIndices;
	tmpIndices.resize(m_vertexIndexMapping.size());
	int i;

	for (i = 0; i < m_vertexIndexMapping.size(); i++)
	{
		tmpIndices[i] = m_vertexIndexMapping[i];
	}

	TUIntArray usedIndices;
	usedIndices.resize(static_cast<int>(vcount));
	memset(&usedIndices[0], 0, sizeof(unsigned int) * vcount);

	ocount = 0;

	for (i = 0; i < int(indexcount); i++)
	{
		unsigned int v = indices[i];  // original array index

		btAssert(v >= 0 && v < vcount);

		if (usedIndices[static_cast<int>(v)])  // if already remapped
		{
			indices[i] = usedIndices[static_cast<int>(v)] - 1;  // index to new array
		}
		else
		{
			indices[i] = ocount;  // new index mapping

			overts[ocount][0] = verts[v][0];  // copy old vert to new vert array
			overts[ocount][1] = verts[v][1];
			overts[ocount][2] = verts[v][2];

			for (int k = 0; k < m_vertexIndexMapping.size(); k++)
			{
				if (tmpIndices[k] == int(v))
					m_vertexIndexMapping[k] = ocount;
			}

			ocount++;  // increment output vert count

			btAssert(ocount >= 0 && ocount <= vcount);

			usedIndices[static_cast<int>(v)] = ocount;  // assign new index remapping
		}
	}
}