summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletSoftBody/poly34.cpp
blob: ec7549c8e8d171b0c1b5ac3411cbef52c7c53c1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
// poly34.cpp : solution of cubic and quartic equation
// (c) Khashin S.I. http://math.ivanovo.ac.ru/dalgebra/Khashin/index.html
// khash2 (at) gmail.com
// Thanks to Alexandr Rakhmanin <rakhmanin (at) gmail.com>
// public domain
//
#include <math.h>

#include "poly34.h"  // solution of cubic and quartic equation
#define TwoPi 6.28318530717958648
const btScalar eps = SIMD_EPSILON;

//=============================================================================
// _root3, root3 from http://prografix.narod.ru
//=============================================================================
static SIMD_FORCE_INLINE btScalar _root3(btScalar x)
{
	btScalar s = 1.;
	while (x < 1.)
	{
		x *= 8.;
		s *= 0.5;
	}
	while (x > 8.)
	{
		x *= 0.125;
		s *= 2.;
	}
	btScalar r = 1.5;
	r -= 1. / 3. * (r - x / (r * r));
	r -= 1. / 3. * (r - x / (r * r));
	r -= 1. / 3. * (r - x / (r * r));
	r -= 1. / 3. * (r - x / (r * r));
	r -= 1. / 3. * (r - x / (r * r));
	r -= 1. / 3. * (r - x / (r * r));
	return r * s;
}

btScalar SIMD_FORCE_INLINE root3(btScalar x)
{
	if (x > 0)
		return _root3(x);
	else if (x < 0)
		return -_root3(-x);
	else
		return 0.;
}

// x - array of size 2
// return 2: 2 real roots x[0], x[1]
// return 0: pair of complex roots: x[0]i*x[1]
int SolveP2(btScalar* x, btScalar a, btScalar b)
{  // solve equation x^2 + a*x + b = 0
	btScalar D = 0.25 * a * a - b;
	if (D >= 0)
	{
		D = sqrt(D);
		x[0] = -0.5 * a + D;
		x[1] = -0.5 * a - D;
		return 2;
	}
	x[0] = -0.5 * a;
	x[1] = sqrt(-D);
	return 0;
}
//---------------------------------------------------------------------------
// x - array of size 3
// In case 3 real roots: => x[0], x[1], x[2], return 3
//         2 real roots: x[0], x[1],          return 2
//         1 real root : x[0], x[1]  i*x[2], return 1
int SolveP3(btScalar* x, btScalar a, btScalar b, btScalar c)
{  // solve cubic equation x^3 + a*x^2 + b*x + c = 0
	btScalar a2 = a * a;
	btScalar q = (a2 - 3 * b) / 9;
	if (q < 0)
		q = eps;
	btScalar r = (a * (2 * a2 - 9 * b) + 27 * c) / 54;
	// equation x^3 + q*x + r = 0
	btScalar r2 = r * r;
	btScalar q3 = q * q * q;
	btScalar A, B;
	if (r2 <= (q3 + eps))
	{  //<<-- FIXED!
		btScalar t = r / sqrt(q3);
		if (t < -1)
			t = -1;
		if (t > 1)
			t = 1;
		t = acos(t);
		a /= 3;
		q = -2 * sqrt(q);
		x[0] = q * cos(t / 3) - a;
		x[1] = q * cos((t + TwoPi) / 3) - a;
		x[2] = q * cos((t - TwoPi) / 3) - a;
		return (3);
	}
	else
	{
		//A =-pow(fabs(r)+sqrt(r2-q3),1./3);
		A = -root3(fabs(r) + sqrt(r2 - q3));
		if (r < 0)
			A = -A;
		B = (A == 0 ? 0 : q / A);

		a /= 3;
		x[0] = (A + B) - a;
		x[1] = -0.5 * (A + B) - a;
		x[2] = 0.5 * sqrt(3.) * (A - B);
		if (fabs(x[2]) < eps)
		{
			x[2] = x[1];
			return (2);
		}
		return (1);
	}
}  // SolveP3(btScalar *x,btScalar a,btScalar b,btScalar c) {
//---------------------------------------------------------------------------
// a>=0!
void CSqrt(btScalar x, btScalar y, btScalar& a, btScalar& b)  // returns:  a+i*s = sqrt(x+i*y)
{
	btScalar r = sqrt(x * x + y * y);
	if (y == 0)
	{
		r = sqrt(r);
		if (x >= 0)
		{
			a = r;
			b = 0;
		}
		else
		{
			a = 0;
			b = r;
		}
	}
	else
	{  // y != 0
		a = sqrt(0.5 * (x + r));
		b = 0.5 * y / a;
	}
}
//---------------------------------------------------------------------------
int SolveP4Bi(btScalar* x, btScalar b, btScalar d)  // solve equation x^4 + b*x^2 + d = 0
{
	btScalar D = b * b - 4 * d;
	if (D >= 0)
	{
		btScalar sD = sqrt(D);
		btScalar x1 = (-b + sD) / 2;
		btScalar x2 = (-b - sD) / 2;  // x2 <= x1
		if (x2 >= 0)                  // 0 <= x2 <= x1, 4 real roots
		{
			btScalar sx1 = sqrt(x1);
			btScalar sx2 = sqrt(x2);
			x[0] = -sx1;
			x[1] = sx1;
			x[2] = -sx2;
			x[3] = sx2;
			return 4;
		}
		if (x1 < 0)  // x2 <= x1 < 0, two pair of imaginary roots
		{
			btScalar sx1 = sqrt(-x1);
			btScalar sx2 = sqrt(-x2);
			x[0] = 0;
			x[1] = sx1;
			x[2] = 0;
			x[3] = sx2;
			return 0;
		}
		// now x2 < 0 <= x1 , two real roots and one pair of imginary root
		btScalar sx1 = sqrt(x1);
		btScalar sx2 = sqrt(-x2);
		x[0] = -sx1;
		x[1] = sx1;
		x[2] = 0;
		x[3] = sx2;
		return 2;
	}
	else
	{  // if( D < 0 ), two pair of compex roots
		btScalar sD2 = 0.5 * sqrt(-D);
		CSqrt(-0.5 * b, sD2, x[0], x[1]);
		CSqrt(-0.5 * b, -sD2, x[2], x[3]);
		return 0;
	}  // if( D>=0 )
}  // SolveP4Bi(btScalar *x, btScalar b, btScalar d)    // solve equation x^4 + b*x^2 d
//---------------------------------------------------------------------------
#define SWAP(a, b) \
	{              \
		t = b;     \
		b = a;     \
		a = t;     \
	}
static void dblSort3(btScalar& a, btScalar& b, btScalar& c)  // make: a <= b <= c
{
	btScalar t;
	if (a > b)
		SWAP(a, b);  // now a<=b
	if (c < b)
	{
		SWAP(b, c);  // now a<=b, b<=c
		if (a > b)
			SWAP(a, b);  // now a<=b
	}
}
//---------------------------------------------------------------------------
int SolveP4De(btScalar* x, btScalar b, btScalar c, btScalar d)  // solve equation x^4 + b*x^2 + c*x + d
{
	//if( c==0 ) return SolveP4Bi(x,b,d); // After that, c!=0
	if (fabs(c) < 1e-14 * (fabs(b) + fabs(d)))
		return SolveP4Bi(x, b, d);  // After that, c!=0

	int res3 = SolveP3(x, 2 * b, b * b - 4 * d, -c * c);  // solve resolvent
	// by Viet theorem:  x1*x2*x3=-c*c not equals to 0, so x1!=0, x2!=0, x3!=0
	if (res3 > 1)  // 3 real roots,
	{
		dblSort3(x[0], x[1], x[2]);  // sort roots to x[0] <= x[1] <= x[2]
		// Note: x[0]*x[1]*x[2]= c*c > 0
		if (x[0] > 0)  // all roots are positive
		{
			btScalar sz1 = sqrt(x[0]);
			btScalar sz2 = sqrt(x[1]);
			btScalar sz3 = sqrt(x[2]);
			// Note: sz1*sz2*sz3= -c (and not equal to 0)
			if (c > 0)
			{
				x[0] = (-sz1 - sz2 - sz3) / 2;
				x[1] = (-sz1 + sz2 + sz3) / 2;
				x[2] = (+sz1 - sz2 + sz3) / 2;
				x[3] = (+sz1 + sz2 - sz3) / 2;
				return 4;
			}
			// now: c<0
			x[0] = (-sz1 - sz2 + sz3) / 2;
			x[1] = (-sz1 + sz2 - sz3) / 2;
			x[2] = (+sz1 - sz2 - sz3) / 2;
			x[3] = (+sz1 + sz2 + sz3) / 2;
			return 4;
		}  // if( x[0] > 0) // all roots are positive
		// now x[0] <= x[1] < 0, x[2] > 0
		// two pair of comlex roots
		btScalar sz1 = sqrt(-x[0]);
		btScalar sz2 = sqrt(-x[1]);
		btScalar sz3 = sqrt(x[2]);

		if (c > 0)  // sign = -1
		{
			x[0] = -sz3 / 2;
			x[1] = (sz1 - sz2) / 2;  // x[0]i*x[1]
			x[2] = sz3 / 2;
			x[3] = (-sz1 - sz2) / 2;  // x[2]i*x[3]
			return 0;
		}
		// now: c<0 , sign = +1
		x[0] = sz3 / 2;
		x[1] = (-sz1 + sz2) / 2;
		x[2] = -sz3 / 2;
		x[3] = (sz1 + sz2) / 2;
		return 0;
	}  // if( res3>1 )    // 3 real roots,
	// now resoventa have 1 real and pair of compex roots
	// x[0] - real root, and x[0]>0,
	// x[1]i*x[2] - complex roots,
	// x[0] must be >=0. But one times x[0]=~ 1e-17, so:
	if (x[0] < 0)
		x[0] = 0;
	btScalar sz1 = sqrt(x[0]);
	btScalar szr, szi;
	CSqrt(x[1], x[2], szr, szi);  // (szr+i*szi)^2 = x[1]+i*x[2]
	if (c > 0)                    // sign = -1
	{
		x[0] = -sz1 / 2 - szr;  // 1st real root
		x[1] = -sz1 / 2 + szr;  // 2nd real root
		x[2] = sz1 / 2;
		x[3] = szi;
		return 2;
	}
	// now: c<0 , sign = +1
	x[0] = sz1 / 2 - szr;  // 1st real root
	x[1] = sz1 / 2 + szr;  // 2nd real root
	x[2] = -sz1 / 2;
	x[3] = szi;
	return 2;
}  // SolveP4De(btScalar *x, btScalar b, btScalar c, btScalar d)    // solve equation x^4 + b*x^2 + c*x + d
//-----------------------------------------------------------------------------
btScalar N4Step(btScalar x, btScalar a, btScalar b, btScalar c, btScalar d)  // one Newton step for x^4 + a*x^3 + b*x^2 + c*x + d
{
	btScalar fxs = ((4 * x + 3 * a) * x + 2 * b) * x + c;  // f'(x)
	if (fxs == 0)
		return x;                                       //return 1e99; <<-- FIXED!
	btScalar fx = (((x + a) * x + b) * x + c) * x + d;  // f(x)
	return x - fx / fxs;
}
//-----------------------------------------------------------------------------
// x - array of size 4
// return 4: 4 real roots x[0], x[1], x[2], x[3], possible multiple roots
// return 2: 2 real roots x[0], x[1] and complex x[2]i*x[3],
// return 0: two pair of complex roots: x[0]i*x[1],  x[2]i*x[3],
int SolveP4(btScalar* x, btScalar a, btScalar b, btScalar c, btScalar d)
{  // solve equation x^4 + a*x^3 + b*x^2 + c*x + d by Dekart-Euler method
	// move to a=0:
	btScalar d1 = d + 0.25 * a * (0.25 * b * a - 3. / 64 * a * a * a - c);
	btScalar c1 = c + 0.5 * a * (0.25 * a * a - b);
	btScalar b1 = b - 0.375 * a * a;
	int res = SolveP4De(x, b1, c1, d1);
	if (res == 4)
	{
		x[0] -= a / 4;
		x[1] -= a / 4;
		x[2] -= a / 4;
		x[3] -= a / 4;
	}
	else if (res == 2)
	{
		x[0] -= a / 4;
		x[1] -= a / 4;
		x[2] -= a / 4;
	}
	else
	{
		x[0] -= a / 4;
		x[2] -= a / 4;
	}
	// one Newton step for each real root:
	if (res > 0)
	{
		x[0] = N4Step(x[0], a, b, c, d);
		x[1] = N4Step(x[1], a, b, c, d);
	}
	if (res > 2)
	{
		x[2] = N4Step(x[2], a, b, c, d);
		x[3] = N4Step(x[3], a, b, c, d);
	}
	return res;
}
//-----------------------------------------------------------------------------
#define F5(t) (((((t + a) * t + b) * t + c) * t + d) * t + e)
//-----------------------------------------------------------------------------
btScalar SolveP5_1(btScalar a, btScalar b, btScalar c, btScalar d, btScalar e)  // return real root of x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0
{
	int cnt;
	if (fabs(e) < eps)
		return 0;

	btScalar brd = fabs(a);  // brd - border of real roots
	if (fabs(b) > brd)
		brd = fabs(b);
	if (fabs(c) > brd)
		brd = fabs(c);
	if (fabs(d) > brd)
		brd = fabs(d);
	if (fabs(e) > brd)
		brd = fabs(e);
	brd++;  // brd - border of real roots

	btScalar x0, f0;       // less than root
	btScalar x1, f1;       // greater than root
	btScalar x2, f2, f2s;  // next values, f(x2), f'(x2)
	btScalar dx = 0;

	if (e < 0)
	{
		x0 = 0;
		x1 = brd;
		f0 = e;
		f1 = F5(x1);
		x2 = 0.01 * brd;
	}  // positive root
	else
	{
		x0 = -brd;
		x1 = 0;
		f0 = F5(x0);
		f1 = e;
		x2 = -0.01 * brd;
	}  // negative root

	if (fabs(f0) < eps)
		return x0;
	if (fabs(f1) < eps)
		return x1;

	// now x0<x1, f(x0)<0, f(x1)>0
	// Firstly 10 bisections
	for (cnt = 0; cnt < 10; cnt++)
	{
		x2 = (x0 + x1) / 2;  // next point
		//x2 = x0 - f0*(x1 - x0) / (f1 - f0);        // next point
		f2 = F5(x2);  // f(x2)
		if (fabs(f2) < eps)
			return x2;
		if (f2 > 0)
		{
			x1 = x2;
			f1 = f2;
		}
		else
		{
			x0 = x2;
			f0 = f2;
		}
	}

	// At each step:
	// x0<x1, f(x0)<0, f(x1)>0.
	// x2 - next value
	// we hope that x0 < x2 < x1, but not necessarily
	do
	{
		if (cnt++ > 50)
			break;
		if (x2 <= x0 || x2 >= x1)
			x2 = (x0 + x1) / 2;  // now  x0 < x2 < x1
		f2 = F5(x2);             // f(x2)
		if (fabs(f2) < eps)
			return x2;
		if (f2 > 0)
		{
			x1 = x2;
			f1 = f2;
		}
		else
		{
			x0 = x2;
			f0 = f2;
		}
		f2s = (((5 * x2 + 4 * a) * x2 + 3 * b) * x2 + 2 * c) * x2 + d;  // f'(x2)
		if (fabs(f2s) < eps)
		{
			x2 = 1e99;
			continue;
		}
		dx = f2 / f2s;
		x2 -= dx;
	} while (fabs(dx) > eps);
	return x2;
}  // SolveP5_1(btScalar a,btScalar b,btScalar c,btScalar d,btScalar e)    // return real root of x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0
//-----------------------------------------------------------------------------
int SolveP5(btScalar* x, btScalar a, btScalar b, btScalar c, btScalar d, btScalar e)  // solve equation x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0
{
	btScalar r = x[0] = SolveP5_1(a, b, c, d, e);
	btScalar a1 = a + r, b1 = b + r * a1, c1 = c + r * b1, d1 = d + r * c1;
	return 1 + SolveP4(x + 1, a1, b1, c1, d1);
}  // SolveP5(btScalar *x,btScalar a,btScalar b,btScalar c,btScalar d,btScalar e)    // solve equation x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0
//-----------------------------------------------------------------------------