1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
|
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///btSparseSdf implementation by Nathanael Presson
#ifndef BT_SPARSE_SDF_H
#define BT_SPARSE_SDF_H
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
// Modified Paul Hsieh hash
template <const int DWORDLEN>
unsigned int HsiehHash(const void* pdata)
{
const unsigned short* data=(const unsigned short*)pdata;
unsigned hash=DWORDLEN<<2,tmp;
for(int i=0;i<DWORDLEN;++i)
{
hash += data[0];
tmp = (data[1]<<11)^hash;
hash = (hash<<16)^tmp;
data += 2;
hash += hash>>11;
}
hash^=hash<<3;hash+=hash>>5;
hash^=hash<<4;hash+=hash>>17;
hash^=hash<<25;hash+=hash>>6;
return(hash);
}
template <const int CELLSIZE>
struct btSparseSdf
{
//
// Inner types
//
struct IntFrac
{
int b;
int i;
btScalar f;
};
struct Cell
{
btScalar d[CELLSIZE+1][CELLSIZE+1][CELLSIZE+1];
int c[3];
int puid;
unsigned hash;
const btCollisionShape* pclient;
Cell* next;
};
//
// Fields
//
btAlignedObjectArray<Cell*> cells;
btScalar voxelsz;
int puid;
int ncells;
int m_clampCells;
int nprobes;
int nqueries;
//
// Methods
//
//
void Initialize(int hashsize=2383, int clampCells = 256*1024)
{
//avoid a crash due to running out of memory, so clamp the maximum number of cells allocated
//if this limit is reached, the SDF is reset (at the cost of some performance during the reset)
m_clampCells = clampCells;
cells.resize(hashsize,0);
Reset();
}
//
void Reset()
{
for(int i=0,ni=cells.size();i<ni;++i)
{
Cell* pc=cells[i];
cells[i]=0;
while(pc)
{
Cell* pn=pc->next;
delete pc;
pc=pn;
}
}
voxelsz =0.25;
puid =0;
ncells =0;
nprobes =1;
nqueries =1;
}
//
void GarbageCollect(int lifetime=256)
{
const int life=puid-lifetime;
for(int i=0;i<cells.size();++i)
{
Cell*& root=cells[i];
Cell* pp=0;
Cell* pc=root;
while(pc)
{
Cell* pn=pc->next;
if(pc->puid<life)
{
if(pp) pp->next=pn; else root=pn;
delete pc;pc=pp;--ncells;
}
pp=pc;pc=pn;
}
}
//printf("GC[%d]: %d cells, PpQ: %f\r\n",puid,ncells,nprobes/(btScalar)nqueries);
nqueries=1;
nprobes=1;
++puid; ///@todo: Reset puid's when int range limit is reached */
/* else setup a priority list... */
}
//
int RemoveReferences(btCollisionShape* pcs)
{
int refcount=0;
for(int i=0;i<cells.size();++i)
{
Cell*& root=cells[i];
Cell* pp=0;
Cell* pc=root;
while(pc)
{
Cell* pn=pc->next;
if(pc->pclient==pcs)
{
if(pp) pp->next=pn; else root=pn;
delete pc;pc=pp;++refcount;
}
pp=pc;pc=pn;
}
}
return(refcount);
}
//
btScalar Evaluate( const btVector3& x,
const btCollisionShape* shape,
btVector3& normal,
btScalar margin)
{
/* Lookup cell */
const btVector3 scx=x/voxelsz;
const IntFrac ix=Decompose(scx.x());
const IntFrac iy=Decompose(scx.y());
const IntFrac iz=Decompose(scx.z());
const unsigned h=Hash(ix.b,iy.b,iz.b,shape);
Cell*& root=cells[static_cast<int>(h%cells.size())];
Cell* c=root;
++nqueries;
while(c)
{
++nprobes;
if( (c->hash==h) &&
(c->c[0]==ix.b) &&
(c->c[1]==iy.b) &&
(c->c[2]==iz.b) &&
(c->pclient==shape))
{ break; }
else
{ c=c->next; }
}
if(!c)
{
++nprobes;
++ncells;
//int sz = sizeof(Cell);
if (ncells>m_clampCells)
{
static int numResets=0;
numResets++;
// printf("numResets=%d\n",numResets);
Reset();
}
c=new Cell();
c->next=root;root=c;
c->pclient=shape;
c->hash=h;
c->c[0]=ix.b;c->c[1]=iy.b;c->c[2]=iz.b;
BuildCell(*c);
}
c->puid=puid;
/* Extract infos */
const int o[]={ ix.i,iy.i,iz.i};
const btScalar d[]={ c->d[o[0]+0][o[1]+0][o[2]+0],
c->d[o[0]+1][o[1]+0][o[2]+0],
c->d[o[0]+1][o[1]+1][o[2]+0],
c->d[o[0]+0][o[1]+1][o[2]+0],
c->d[o[0]+0][o[1]+0][o[2]+1],
c->d[o[0]+1][o[1]+0][o[2]+1],
c->d[o[0]+1][o[1]+1][o[2]+1],
c->d[o[0]+0][o[1]+1][o[2]+1]};
/* Normal */
#if 1
const btScalar gx[]={ d[1]-d[0],d[2]-d[3],
d[5]-d[4],d[6]-d[7]};
const btScalar gy[]={ d[3]-d[0],d[2]-d[1],
d[7]-d[4],d[6]-d[5]};
const btScalar gz[]={ d[4]-d[0],d[5]-d[1],
d[7]-d[3],d[6]-d[2]};
normal.setX(Lerp( Lerp(gx[0],gx[1],iy.f),
Lerp(gx[2],gx[3],iy.f),iz.f));
normal.setY(Lerp( Lerp(gy[0],gy[1],ix.f),
Lerp(gy[2],gy[3],ix.f),iz.f));
normal.setZ(Lerp( Lerp(gz[0],gz[1],ix.f),
Lerp(gz[2],gz[3],ix.f),iy.f));
normal = normal.normalized();
#else
normal = btVector3(d[1]-d[0],d[3]-d[0],d[4]-d[0]).normalized();
#endif
/* Distance */
const btScalar d0=Lerp(Lerp(d[0],d[1],ix.f),
Lerp(d[3],d[2],ix.f),iy.f);
const btScalar d1=Lerp(Lerp(d[4],d[5],ix.f),
Lerp(d[7],d[6],ix.f),iy.f);
return(Lerp(d0,d1,iz.f)-margin);
}
//
void BuildCell(Cell& c)
{
const btVector3 org=btVector3( (btScalar)c.c[0],
(btScalar)c.c[1],
(btScalar)c.c[2]) *
CELLSIZE*voxelsz;
for(int k=0;k<=CELLSIZE;++k)
{
const btScalar z=voxelsz*k+org.z();
for(int j=0;j<=CELLSIZE;++j)
{
const btScalar y=voxelsz*j+org.y();
for(int i=0;i<=CELLSIZE;++i)
{
const btScalar x=voxelsz*i+org.x();
c.d[i][j][k]=DistanceToShape( btVector3(x,y,z),
c.pclient);
}
}
}
}
//
static inline btScalar DistanceToShape(const btVector3& x,
const btCollisionShape* shape)
{
btTransform unit;
unit.setIdentity();
if(shape->isConvex())
{
btGjkEpaSolver2::sResults res;
const btConvexShape* csh=static_cast<const btConvexShape*>(shape);
return(btGjkEpaSolver2::SignedDistance(x,0,csh,unit,res));
}
return(0);
}
//
static inline IntFrac Decompose(btScalar x)
{
/* That one need a lot of improvements... */
/* Remove test, faster floor... */
IntFrac r;
x/=CELLSIZE;
const int o=x<0?(int)(-x+1):0;
x+=o;r.b=(int)x;
const btScalar k=(x-r.b)*CELLSIZE;
r.i=(int)k;r.f=k-r.i;r.b-=o;
return(r);
}
//
static inline btScalar Lerp(btScalar a,btScalar b,btScalar t)
{
return(a+(b-a)*t);
}
//
static inline unsigned int Hash(int x,int y,int z,const btCollisionShape* shape)
{
struct btS
{
int x,y,z;
void* p;
};
btS myset;
myset.x=x;myset.y=y;myset.z=z;myset.p=(void*)shape;
const void* ptr = &myset;
unsigned int result = HsiehHash<sizeof(btS)/4> (ptr);
return result;
}
};
#endif //BT_SPARSE_SDF_H
|