summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletSoftBody/btDeformableMultiBodyDynamicsWorld.h
blob: 76b58a03789ab41157904474331b358732bfd060 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
/*
 Written by Xuchen Han <xuchenhan2015@u.northwestern.edu>
 
 Bullet Continuous Collision Detection and Physics Library
 Copyright (c) 2019 Google Inc. http://bulletphysics.org
 This software is provided 'as-is', without any express or implied warranty.
 In no event will the authors be held liable for any damages arising from the use of this software.
 Permission is granted to anyone to use this software for any purpose,
 including commercial applications, and to alter it and redistribute it freely,
 subject to the following restrictions:
 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 3. This notice may not be removed or altered from any source distribution.
 */

#ifndef BT_DEFORMABLE_MULTIBODY_DYNAMICS_WORLD_H
#define BT_DEFORMABLE_MULTIBODY_DYNAMICS_WORLD_H

#include "btSoftMultiBodyDynamicsWorld.h"
#include "btDeformableLagrangianForce.h"
#include "btDeformableMassSpringForce.h"
#include "btDeformableBodySolver.h"
#include "btDeformableMultiBodyConstraintSolver.h"
#include "btSoftBodyHelpers.h"
#include "BulletCollision/CollisionDispatch/btSimulationIslandManager.h"
#include <functional>
typedef btAlignedObjectArray<btSoftBody*> btSoftBodyArray;

class btDeformableBodySolver;
class btDeformableLagrangianForce;
struct MultiBodyInplaceSolverIslandCallback;
struct DeformableBodyInplaceSolverIslandCallback;
class btDeformableMultiBodyConstraintSolver;

typedef btAlignedObjectArray<btSoftBody*> btSoftBodyArray;

class btDeformableMultiBodyDynamicsWorld : public btMultiBodyDynamicsWorld
{
    typedef btAlignedObjectArray<btVector3> TVStack;
    ///Solver classes that encapsulate multiple deformable bodies for solving
    btDeformableBodySolver* m_deformableBodySolver;
    btSoftBodyArray m_softBodies;
    int m_drawFlags;
    bool m_drawNodeTree;
    bool m_drawFaceTree;
    bool m_drawClusterTree;
    btSoftBodyWorldInfo m_sbi;
    btScalar m_internalTime;
    int m_ccdIterations;
    bool m_implicit;
    bool m_lineSearch;
    bool m_useProjection;
    DeformableBodyInplaceSolverIslandCallback* m_solverDeformableBodyIslandCallback;
    
    typedef void (*btSolverCallback)(btScalar time, btDeformableMultiBodyDynamicsWorld* world);
    btSolverCallback m_solverCallback;
    
protected:
    virtual void internalSingleStepSimulation(btScalar timeStep);
    
    virtual void integrateTransforms(btScalar timeStep);
    
    void positionCorrection(btScalar timeStep);
    
    void solveConstraints(btScalar timeStep);
    
    void updateActivationState(btScalar timeStep);
    
    void clearGravity();
    
public:
	btDeformableMultiBodyDynamicsWorld(btDispatcher* dispatcher, btBroadphaseInterface* pairCache, btDeformableMultiBodyConstraintSolver* constraintSolver, btCollisionConfiguration* collisionConfiguration, btDeformableBodySolver* deformableBodySolver = 0);

    virtual int stepSimulation(btScalar timeStep, int maxSubSteps = 1, btScalar fixedTimeStep = btScalar(1.) / btScalar(60.));

	virtual void debugDrawWorld();

    void setSolverCallback(btSolverCallback cb)
    {
        m_solverCallback = cb;
    }
    
    virtual ~btDeformableMultiBodyDynamicsWorld();
    
    virtual btMultiBodyDynamicsWorld* getMultiBodyDynamicsWorld()
    {
        return (btMultiBodyDynamicsWorld*)(this);
    }
    
    virtual const btMultiBodyDynamicsWorld* getMultiBodyDynamicsWorld() const
    {
        return (const btMultiBodyDynamicsWorld*)(this);
    }
    
    virtual btDynamicsWorldType getWorldType() const
    {
        return BT_DEFORMABLE_MULTIBODY_DYNAMICS_WORLD;
    }
    
    virtual void predictUnconstraintMotion(btScalar timeStep);
    
    virtual void addSoftBody(btSoftBody* body, int collisionFilterGroup = btBroadphaseProxy::DefaultFilter, int collisionFilterMask = btBroadphaseProxy::AllFilter);
    
    btSoftBodyArray& getSoftBodyArray()
    {
        return m_softBodies;
    }
    
    const btSoftBodyArray& getSoftBodyArray() const
    {
        return m_softBodies;
    }
    
    btSoftBodyWorldInfo& getWorldInfo()
    {
        return m_sbi;
    }
    
    const btSoftBodyWorldInfo& getWorldInfo() const
    {
        return m_sbi;
    }
    
    void reinitialize(btScalar timeStep);
    
    void applyRigidBodyGravity(btScalar timeStep);
    
    void beforeSolverCallbacks(btScalar timeStep);
    
    void afterSolverCallbacks(btScalar timeStep);
    
    void addForce(btSoftBody* psb, btDeformableLagrangianForce* force);
    
    void removeForce(btSoftBody* psb, btDeformableLagrangianForce* force);
    
    void removeSoftBody(btSoftBody* body);
    
    void removeCollisionObject(btCollisionObject* collisionObject);
    
    int getDrawFlags() const { return (m_drawFlags); }
    void setDrawFlags(int f) { m_drawFlags = f; }
    
    void setupConstraints();
    
    void performDeformableCollisionDetection();
    
    void solveMultiBodyConstraints();
    
    void solveContactConstraints();
    
    void sortConstraints();
    
    void softBodySelfCollision();
    
    void setImplicit(bool implicit)
    {
        m_implicit = implicit;
    }
    
    void setLineSearch(bool lineSearch)
    {
        m_lineSearch = lineSearch;
    }
    
    void applyRepulsionForce(btScalar timeStep);
    
    void performGeometricCollisions(btScalar timeStep);
    
    struct btDeformableSingleRayCallback : public btBroadphaseRayCallback
    {
        btVector3 m_rayFromWorld;
        btVector3 m_rayToWorld;
        btTransform m_rayFromTrans;
        btTransform m_rayToTrans;
        btVector3 m_hitNormal;
        
        const btDeformableMultiBodyDynamicsWorld* m_world;
        btCollisionWorld::RayResultCallback& m_resultCallback;
        
        btDeformableSingleRayCallback(const btVector3& rayFromWorld, const btVector3& rayToWorld, const btDeformableMultiBodyDynamicsWorld* world, btCollisionWorld::RayResultCallback& resultCallback)
        : m_rayFromWorld(rayFromWorld),
        m_rayToWorld(rayToWorld),
        m_world(world),
        m_resultCallback(resultCallback)
        {
            m_rayFromTrans.setIdentity();
            m_rayFromTrans.setOrigin(m_rayFromWorld);
            m_rayToTrans.setIdentity();
            m_rayToTrans.setOrigin(m_rayToWorld);
            
            btVector3 rayDir = (rayToWorld - rayFromWorld);
            
            rayDir.normalize();
            ///what about division by zero? --> just set rayDirection[i] to INF/1e30
            m_rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[0];
            m_rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[1];
            m_rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(1e30) : btScalar(1.0) / rayDir[2];
            m_signs[0] = m_rayDirectionInverse[0] < 0.0;
            m_signs[1] = m_rayDirectionInverse[1] < 0.0;
            m_signs[2] = m_rayDirectionInverse[2] < 0.0;
            
            m_lambda_max = rayDir.dot(m_rayToWorld - m_rayFromWorld);
        }
        
        virtual bool process(const btBroadphaseProxy* proxy)
        {
            ///terminate further ray tests, once the closestHitFraction reached zero
            if (m_resultCallback.m_closestHitFraction == btScalar(0.f))
                return false;
            
            btCollisionObject* collisionObject = (btCollisionObject*)proxy->m_clientObject;
            
            //only perform raycast if filterMask matches
            if (m_resultCallback.needsCollision(collisionObject->getBroadphaseHandle()))
            {
                //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
                //btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
#if 0
#ifdef RECALCULATE_AABB
                btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
                collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax);
#else
                //getBroadphase()->getAabb(collisionObject->getBroadphaseHandle(),collisionObjectAabbMin,collisionObjectAabbMax);
                const btVector3& collisionObjectAabbMin = collisionObject->getBroadphaseHandle()->m_aabbMin;
                const btVector3& collisionObjectAabbMax = collisionObject->getBroadphaseHandle()->m_aabbMax;
#endif
#endif
                //btScalar hitLambda = m_resultCallback.m_closestHitFraction;
                //culling already done by broadphase
                //if (btRayAabb(m_rayFromWorld,m_rayToWorld,collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,m_hitNormal))
                {
                    m_world->rayTestSingle(m_rayFromTrans, m_rayToTrans,
                                           collisionObject,
                                           collisionObject->getCollisionShape(),
                                           collisionObject->getWorldTransform(),
                                           m_resultCallback);
                }
            }
            return true;
        }
    };

    
    
    void rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, RayResultCallback& resultCallback) const
    {
        BT_PROFILE("rayTest");
        /// use the broadphase to accelerate the search for objects, based on their aabb
        /// and for each object with ray-aabb overlap, perform an exact ray test
        btDeformableSingleRayCallback rayCB(rayFromWorld, rayToWorld, this, resultCallback);
        
#ifndef USE_BRUTEFORCE_RAYBROADPHASE
        m_broadphasePairCache->rayTest(rayFromWorld, rayToWorld, rayCB);
#else
        for (int i = 0; i < this->getNumCollisionObjects(); i++)
        {
            rayCB.process(m_collisionObjects[i]->getBroadphaseHandle());
        }
#endif  //USE_BRUTEFORCE_RAYBROADPHASE
    }
    
    void rayTestSingle(const btTransform& rayFromTrans, const btTransform& rayToTrans,
                                                     btCollisionObject* collisionObject,
                                                     const btCollisionShape* collisionShape,
                                                     const btTransform& colObjWorldTransform,
                                                     RayResultCallback& resultCallback) const
    {
        if (collisionShape->isSoftBody())
        {
            btSoftBody* softBody = btSoftBody::upcast(collisionObject);
            if (softBody)
            {
                btSoftBody::sRayCast softResult;
                if (softBody->rayFaceTest(rayFromTrans.getOrigin(), rayToTrans.getOrigin(), softResult))
                {
                    if (softResult.fraction <= resultCallback.m_closestHitFraction)
                    {
                        btCollisionWorld::LocalShapeInfo shapeInfo;
                        shapeInfo.m_shapePart = 0;
                        shapeInfo.m_triangleIndex = softResult.index;
                        // get the normal
                        btVector3 rayDir = rayToTrans.getOrigin() - rayFromTrans.getOrigin();
                        btVector3 normal = -rayDir;
                        normal.normalize();
                        {
                            normal = softBody->m_faces[softResult.index].m_normal;
                            if (normal.dot(rayDir) > 0)
                            {
                                // normal always point toward origin of the ray
                                normal = -normal;
                            }
                        }
                        
                        btCollisionWorld::LocalRayResult rayResult(collisionObject,
                                                                   &shapeInfo,
                                                                   normal,
                                                                   softResult.fraction);
                        bool normalInWorldSpace = true;
                        resultCallback.addSingleResult(rayResult, normalInWorldSpace);
                    }
                }
            }
        }
        else
        {
            btCollisionWorld::rayTestSingle(rayFromTrans, rayToTrans, collisionObject, collisionShape, colObjWorldTransform, resultCallback);
        }
    }
};

#endif  //BT_DEFORMABLE_MULTIBODY_DYNAMICS_WORLD_H