1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
/*
Written by Xuchen Han <xuchenhan2015@u.northwestern.edu>
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2019 Google Inc. http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_DEFORMABLE_CONTACT_CONSTRAINT_H
#define BT_DEFORMABLE_CONTACT_CONSTRAINT_H
#include "btSoftBody.h"
// btDeformableContactConstraint is an abstract class specifying the method that each type of contact constraint needs to implement
class btDeformableContactConstraint
{
public:
// True if the friction is static
// False if the friction is dynamic
bool m_static;
const btContactSolverInfo* m_infoGlobal;
// normal of the contact
btVector3 m_normal;
btDeformableContactConstraint(const btVector3& normal, const btContactSolverInfo& infoGlobal): m_static(false), m_normal(normal), m_infoGlobal(&infoGlobal)
{
}
btDeformableContactConstraint(bool isStatic, const btVector3& normal, const btContactSolverInfo& infoGlobal): m_static(isStatic), m_normal(normal), m_infoGlobal(&infoGlobal)
{
}
btDeformableContactConstraint(){}
btDeformableContactConstraint(const btDeformableContactConstraint& other)
: m_static(other.m_static)
, m_normal(other.m_normal)
, m_infoGlobal(other.m_infoGlobal)
{
}
virtual ~btDeformableContactConstraint(){}
// solve the constraint with inelastic impulse and return the error, which is the square of normal component of velocity diffrerence
// the constraint is solved by calculating the impulse between object A and B in the contact and apply the impulse to both objects involved in the contact
virtual btScalar solveConstraint(const btContactSolverInfo& infoGlobal) = 0;
// get the velocity of the object A in the contact
virtual btVector3 getVa() const = 0;
// get the velocity of the object B in the contact
virtual btVector3 getVb() const = 0;
// get the velocity change of the soft body node in the constraint
virtual btVector3 getDv(const btSoftBody::Node*) const = 0;
// apply impulse to the soft body node and/or face involved
virtual void applyImpulse(const btVector3& impulse) = 0;
// scale the penetration depth by erp
virtual void setPenetrationScale(btScalar scale) = 0;
};
//
// Constraint that a certain node in the deformable objects cannot move
class btDeformableStaticConstraint : public btDeformableContactConstraint
{
public:
btSoftBody::Node* m_node;
btDeformableStaticConstraint(btSoftBody::Node* node, const btContactSolverInfo& infoGlobal): m_node(node), btDeformableContactConstraint(false, btVector3(0,0,0), infoGlobal)
{
}
btDeformableStaticConstraint(){}
btDeformableStaticConstraint(const btDeformableStaticConstraint& other)
: m_node(other.m_node)
, btDeformableContactConstraint(other)
{
}
virtual ~btDeformableStaticConstraint(){}
virtual btScalar solveConstraint(const btContactSolverInfo& infoGlobal)
{
return 0;
}
virtual btVector3 getVa() const
{
return btVector3(0,0,0);
}
virtual btVector3 getVb() const
{
return btVector3(0,0,0);
}
virtual btVector3 getDv(const btSoftBody::Node* n) const
{
return btVector3(0,0,0);
}
virtual void applyImpulse(const btVector3& impulse){}
virtual void setPenetrationScale(btScalar scale){}
};
//
// Anchor Constraint between rigid and deformable node
class btDeformableNodeAnchorConstraint : public btDeformableContactConstraint
{
public:
const btSoftBody::DeformableNodeRigidAnchor* m_anchor;
btDeformableNodeAnchorConstraint(const btSoftBody::DeformableNodeRigidAnchor& c, const btContactSolverInfo& infoGlobal);
btDeformableNodeAnchorConstraint(const btDeformableNodeAnchorConstraint& other);
btDeformableNodeAnchorConstraint(){}
virtual ~btDeformableNodeAnchorConstraint()
{
}
virtual btScalar solveConstraint(const btContactSolverInfo& infoGlobal);
// object A is the rigid/multi body, and object B is the deformable node/face
virtual btVector3 getVa() const;
// get the velocity of the deformable node in contact
virtual btVector3 getVb() const;
virtual btVector3 getDv(const btSoftBody::Node* n) const
{
return btVector3(0,0,0);
}
virtual void applyImpulse(const btVector3& impulse);
virtual void setPenetrationScale(btScalar scale){}
};
//
// Constraint between rigid/multi body and deformable objects
class btDeformableRigidContactConstraint : public btDeformableContactConstraint
{
public:
btVector3 m_total_normal_dv;
btVector3 m_total_tangent_dv;
btScalar m_penetration;
const btSoftBody::DeformableRigidContact* m_contact;
btDeformableRigidContactConstraint(const btSoftBody::DeformableRigidContact& c, const btContactSolverInfo& infoGlobal);
btDeformableRigidContactConstraint(const btDeformableRigidContactConstraint& other);
btDeformableRigidContactConstraint(){}
virtual ~btDeformableRigidContactConstraint()
{
}
// object A is the rigid/multi body, and object B is the deformable node/face
virtual btVector3 getVa() const;
virtual btScalar solveConstraint(const btContactSolverInfo& infoGlobal);
virtual void setPenetrationScale(btScalar scale)
{
m_penetration *= scale;
}
};
//
// Constraint between rigid/multi body and deformable objects nodes
class btDeformableNodeRigidContactConstraint : public btDeformableRigidContactConstraint
{
public:
// the deformable node in contact
btSoftBody::Node* m_node;
btDeformableNodeRigidContactConstraint(const btSoftBody::DeformableNodeRigidContact& contact, const btContactSolverInfo& infoGlobal);
btDeformableNodeRigidContactConstraint(const btDeformableNodeRigidContactConstraint& other);
btDeformableNodeRigidContactConstraint(){}
virtual ~btDeformableNodeRigidContactConstraint()
{
}
// get the velocity of the deformable node in contact
virtual btVector3 getVb() const;
// get the velocity change of the input soft body node in the constraint
virtual btVector3 getDv(const btSoftBody::Node*) const;
// cast the contact to the desired type
const btSoftBody::DeformableNodeRigidContact* getContact() const
{
return static_cast<const btSoftBody::DeformableNodeRigidContact*>(m_contact);
}
virtual void applyImpulse(const btVector3& impulse);
};
//
// Constraint between rigid/multi body and deformable objects faces
class btDeformableFaceRigidContactConstraint : public btDeformableRigidContactConstraint
{
public:
const btSoftBody::Face* m_face;
bool m_useStrainLimiting;
btDeformableFaceRigidContactConstraint(const btSoftBody::DeformableFaceRigidContact& contact, const btContactSolverInfo& infoGlobal, bool useStrainLimiting);
btDeformableFaceRigidContactConstraint(const btDeformableFaceRigidContactConstraint& other);
btDeformableFaceRigidContactConstraint(): m_useStrainLimiting(false) {}
virtual ~btDeformableFaceRigidContactConstraint()
{
}
// get the velocity of the deformable face at the contact point
virtual btVector3 getVb() const;
// get the velocity change of the input soft body node in the constraint
virtual btVector3 getDv(const btSoftBody::Node*) const;
// cast the contact to the desired type
const btSoftBody::DeformableFaceRigidContact* getContact() const
{
return static_cast<const btSoftBody::DeformableFaceRigidContact*>(m_contact);
}
virtual void applyImpulse(const btVector3& impulse);
};
//
// Constraint between deformable objects faces and deformable objects nodes
class btDeformableFaceNodeContactConstraint : public btDeformableContactConstraint
{
public:
btSoftBody::Node* m_node;
btSoftBody::Face* m_face;
const btSoftBody::DeformableFaceNodeContact* m_contact;
btVector3 m_total_normal_dv;
btVector3 m_total_tangent_dv;
btDeformableFaceNodeContactConstraint(const btSoftBody::DeformableFaceNodeContact& contact, const btContactSolverInfo& infoGlobal);
btDeformableFaceNodeContactConstraint(){}
virtual ~btDeformableFaceNodeContactConstraint(){}
virtual btScalar solveConstraint(const btContactSolverInfo& infoGlobal);
// get the velocity of the object A in the contact
virtual btVector3 getVa() const;
// get the velocity of the object B in the contact
virtual btVector3 getVb() const;
// get the velocity change of the input soft body node in the constraint
virtual btVector3 getDv(const btSoftBody::Node*) const;
// cast the contact to the desired type
const btSoftBody::DeformableFaceNodeContact* getContact() const
{
return static_cast<const btSoftBody::DeformableFaceNodeContact*>(m_contact);
}
virtual void applyImpulse(const btVector3& impulse);
virtual void setPenetrationScale(btScalar scale){}
};
#endif /* BT_DEFORMABLE_CONTACT_CONSTRAINT_H */
|