summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletSoftBody/btDeformableContactConstraint.cpp
blob: 2864446de61304ec02293a1578bee9a20eda77f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
/*
 Written by Xuchen Han <xuchenhan2015@u.northwestern.edu>
 
 Bullet Continuous Collision Detection and Physics Library
 Copyright (c) 2019 Google Inc. http://bulletphysics.org
 This software is provided 'as-is', without any express or implied warranty.
 In no event will the authors be held liable for any damages arising from the use of this software.
 Permission is granted to anyone to use this software for any purpose,
 including commercial applications, and to alter it and redistribute it freely,
 subject to the following restrictions:
 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 3. This notice may not be removed or altered from any source distribution.
 */

#include "btDeformableContactConstraint.h"
/* ================   Deformable Node Anchor   =================== */
btDeformableNodeAnchorConstraint::btDeformableNodeAnchorConstraint(const btSoftBody::DeformableNodeRigidAnchor& a, const btContactSolverInfo& infoGlobal)
: m_anchor(&a)
, btDeformableContactConstraint(a.m_cti.m_normal, infoGlobal)
{
}

btDeformableNodeAnchorConstraint::btDeformableNodeAnchorConstraint(const btDeformableNodeAnchorConstraint& other)
: m_anchor(other.m_anchor)
, btDeformableContactConstraint(other)
{
}

btVector3 btDeformableNodeAnchorConstraint::getVa() const
{
    const btSoftBody::sCti& cti = m_anchor->m_cti;
    btVector3 va(0, 0, 0);
    if (cti.m_colObj->hasContactResponse())
    {
        btRigidBody* rigidCol = 0;
        btMultiBodyLinkCollider* multibodyLinkCol = 0;
        
        // grab the velocity of the rigid body
        if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
        {
            rigidCol = (btRigidBody*)btRigidBody::upcast(cti.m_colObj);
            va = rigidCol ? (rigidCol->getVelocityInLocalPoint(m_anchor->m_c1)) : btVector3(0, 0, 0);
        }
        else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
        {
            multibodyLinkCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(cti.m_colObj);
            if (multibodyLinkCol)
            {
                const int ndof = multibodyLinkCol->m_multiBody->getNumDofs() + 6;
                const btScalar* J_n = &m_anchor->jacobianData_normal.m_jacobians[0];
                const btScalar* J_t1 = &m_anchor->jacobianData_t1.m_jacobians[0];
                const btScalar* J_t2 = &m_anchor->jacobianData_t2.m_jacobians[0];
                const btScalar* local_v = multibodyLinkCol->m_multiBody->getVelocityVector();
                const btScalar* local_dv = multibodyLinkCol->m_multiBody->getDeltaVelocityVector();
                // add in the normal component of the va
                btScalar vel = 0.0;
                for (int k = 0; k < ndof; ++k)
                {
                    vel += (local_v[k]+local_dv[k]) * J_n[k];
                }
                va = cti.m_normal * vel;
                // add in the tangential components of the va
                vel = 0.0;
                for (int k = 0; k < ndof; ++k)
                {
                    vel += (local_v[k]+local_dv[k]) * J_t1[k];
                }
                va += m_anchor->t1 * vel;
                vel = 0.0;
                for (int k = 0; k < ndof; ++k)
                {
                    vel += (local_v[k]+local_dv[k]) * J_t2[k];
                }
                va += m_anchor->t2 * vel;
            }
        }
    }
    return va;
}

btScalar btDeformableNodeAnchorConstraint::solveConstraint(const btContactSolverInfo& infoGlobal)
{
    const btSoftBody::sCti& cti = m_anchor->m_cti;
    btVector3 va = getVa();
    btVector3 vb = getVb();
    btVector3 vr = (vb - va);
    // + (m_anchor->m_node->m_x - cti.m_colObj->getWorldTransform() * m_anchor->m_local) * 10.0
    const btScalar dn = btDot(vr, vr);
    // dn is the normal component of velocity diffrerence. Approximates the residual. // todo xuchenhan@: this prob needs to be scaled by dt
    btScalar residualSquare = dn*dn;
    btVector3 impulse = m_anchor->m_c0 * vr;
    // apply impulse to deformable nodes involved and change their velocities
    applyImpulse(impulse);
    
    // apply impulse to the rigid/multibodies involved and change their velocities
    if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
    {
        btRigidBody* rigidCol = 0;
        rigidCol = (btRigidBody*)btRigidBody::upcast(cti.m_colObj);
        if (rigidCol)
        {
            rigidCol->applyImpulse(impulse, m_anchor->m_c1);
        }
    }
    else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
    {
        btMultiBodyLinkCollider* multibodyLinkCol = 0;
        multibodyLinkCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(cti.m_colObj);
        if (multibodyLinkCol)
        {
            const btScalar* deltaV_normal = &m_anchor->jacobianData_normal.m_deltaVelocitiesUnitImpulse[0];
            // apply normal component of the impulse
            multibodyLinkCol->m_multiBody->applyDeltaVeeMultiDof2(deltaV_normal, impulse.dot(cti.m_normal));
            // apply tangential component of the impulse
            const btScalar* deltaV_t1 = &m_anchor->jacobianData_t1.m_deltaVelocitiesUnitImpulse[0];
            multibodyLinkCol->m_multiBody->applyDeltaVeeMultiDof2(deltaV_t1, impulse.dot(m_anchor->t1));
            const btScalar* deltaV_t2 = &m_anchor->jacobianData_t2.m_deltaVelocitiesUnitImpulse[0];
            multibodyLinkCol->m_multiBody->applyDeltaVeeMultiDof2(deltaV_t2, impulse.dot(m_anchor->t2));
        }
    }
    return residualSquare;
}

btVector3 btDeformableNodeAnchorConstraint::getVb() const
{
    return m_anchor->m_node->m_v;
}

void btDeformableNodeAnchorConstraint::applyImpulse(const btVector3& impulse)
{
    btVector3 dv = impulse * m_anchor->m_c2;
    m_anchor->m_node->m_v -= dv;
}

/* ================   Deformable vs. Rigid   =================== */
btDeformableRigidContactConstraint::btDeformableRigidContactConstraint(const btSoftBody::DeformableRigidContact& c, const btContactSolverInfo& infoGlobal)
: m_contact(&c)
, btDeformableContactConstraint(c.m_cti.m_normal, infoGlobal)
{
    m_total_normal_dv.setZero();
    m_total_tangent_dv.setZero();
    // The magnitude of penetration is the depth of penetration.
    m_penetration = c.m_cti.m_offset;
//	m_penetration = btMin(btScalar(0),c.m_cti.m_offset);
}

btDeformableRigidContactConstraint::btDeformableRigidContactConstraint(const btDeformableRigidContactConstraint& other)
: m_contact(other.m_contact)
, btDeformableContactConstraint(other)
, m_penetration(other.m_penetration)
{
    m_total_normal_dv = other.m_total_normal_dv;
    m_total_tangent_dv = other.m_total_tangent_dv;
}


btVector3 btDeformableRigidContactConstraint::getVa() const
{
    const btSoftBody::sCti& cti = m_contact->m_cti;
    btVector3 va(0, 0, 0);
    if (cti.m_colObj->hasContactResponse())
    {
        btRigidBody* rigidCol = 0;
        btMultiBodyLinkCollider* multibodyLinkCol = 0;
        
        // grab the velocity of the rigid body
        if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
        {
            rigidCol = (btRigidBody*)btRigidBody::upcast(cti.m_colObj);
            va = rigidCol ? (rigidCol->getVelocityInLocalPoint(m_contact->m_c1)) : btVector3(0, 0, 0);
        }
        else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
        {
            multibodyLinkCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(cti.m_colObj);
            if (multibodyLinkCol)
            {
                const int ndof = multibodyLinkCol->m_multiBody->getNumDofs() + 6;
                const btScalar* J_n = &m_contact->jacobianData_normal.m_jacobians[0];
                const btScalar* J_t1 = &m_contact->jacobianData_t1.m_jacobians[0];
                const btScalar* J_t2 = &m_contact->jacobianData_t2.m_jacobians[0];
                const btScalar* local_v = multibodyLinkCol->m_multiBody->getVelocityVector();
                const btScalar* local_dv = multibodyLinkCol->m_multiBody->getDeltaVelocityVector();
                // add in the normal component of the va
                btScalar vel = 0.0;
                for (int k = 0; k < ndof; ++k)
                {
                    vel += (local_v[k]+local_dv[k]) * J_n[k];
                }
                va = cti.m_normal * vel;
                // add in the tangential components of the va
                vel = 0.0;
                for (int k = 0; k < ndof; ++k)
                {
                    vel += (local_v[k]+local_dv[k]) * J_t1[k];
                }
                va += m_contact->t1 * vel;
                vel = 0.0;
                for (int k = 0; k < ndof; ++k)
                {
                    vel += (local_v[k]+local_dv[k]) * J_t2[k];
                }
                va += m_contact->t2 * vel;
            }
        }
    }
    return va;
}

btScalar btDeformableRigidContactConstraint::solveConstraint(const btContactSolverInfo& infoGlobal)
{
    const btSoftBody::sCti& cti = m_contact->m_cti;
    btVector3 va = getVa();
    btVector3 vb = getVb();
    btVector3 vr = vb - va;
    btScalar dn = btDot(vr, cti.m_normal) + m_penetration * infoGlobal.m_deformable_erp / infoGlobal.m_timeStep;
    // dn is the normal component of velocity diffrerence. Approximates the residual. // todo xuchenhan@: this prob needs to be scaled by dt
    btScalar residualSquare = dn*dn;
    btVector3 impulse = m_contact->m_c0 * (vr + m_penetration * infoGlobal.m_deformable_erp / infoGlobal.m_timeStep * cti.m_normal) ;
    const btVector3 impulse_normal = m_contact->m_c0 * (cti.m_normal * dn);
    btVector3 impulse_tangent = impulse - impulse_normal;
    btVector3 old_total_tangent_dv = m_total_tangent_dv;
    // m_c2 is the inverse mass of the deformable node/face
    m_total_normal_dv -= impulse_normal * m_contact->m_c2;
    m_total_tangent_dv -= impulse_tangent * m_contact->m_c2;

    if (m_total_normal_dv.dot(cti.m_normal) < 0)
    {
        // separating in the normal direction
        m_static = false;
        m_total_tangent_dv = btVector3(0,0,0);
        impulse_tangent.setZero();
    }
    else
    {
        if (m_total_normal_dv.norm() * m_contact->m_c3 < m_total_tangent_dv.norm())
        {
            // dynamic friction
            // with dynamic friction, the impulse are still applied to the two objects colliding, however, it does not pose a constraint in the cg solve, hence the change to dv merely serves to update velocity in the contact iterations.
            m_static = false;
            if (m_total_tangent_dv.safeNorm() < SIMD_EPSILON)
            {
                m_total_tangent_dv = btVector3(0,0,0);
            }
            else
            {
                m_total_tangent_dv = m_total_tangent_dv.normalized() * m_total_normal_dv.safeNorm() * m_contact->m_c3;
            }
            impulse_tangent = -btScalar(1)/m_contact->m_c2 * (m_total_tangent_dv - old_total_tangent_dv);
        }
        else
        {
            // static friction
            m_static = true;
        }
    }
    impulse = impulse_normal + impulse_tangent;
    // apply impulse to deformable nodes involved and change their velocities
    applyImpulse(impulse);
	if (residualSquare < 1e-7)
		return residualSquare;
    // apply impulse to the rigid/multibodies involved and change their velocities
    if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
    {
        btRigidBody* rigidCol = 0;
        rigidCol = (btRigidBody*)btRigidBody::upcast(cti.m_colObj);
        if (rigidCol)
        {
            rigidCol->applyImpulse(impulse, m_contact->m_c1);
        }
    }
    else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
    {
        btMultiBodyLinkCollider* multibodyLinkCol = 0;
        multibodyLinkCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(cti.m_colObj);
        if (multibodyLinkCol)
        {
            const btScalar* deltaV_normal = &m_contact->jacobianData_normal.m_deltaVelocitiesUnitImpulse[0];
            // apply normal component of the impulse
            multibodyLinkCol->m_multiBody->applyDeltaVeeMultiDof2(deltaV_normal, impulse.dot(cti.m_normal));
            if (impulse_tangent.norm() > SIMD_EPSILON)
            {
                // apply tangential component of the impulse
                const btScalar* deltaV_t1 = &m_contact->jacobianData_t1.m_deltaVelocitiesUnitImpulse[0];
                multibodyLinkCol->m_multiBody->applyDeltaVeeMultiDof2(deltaV_t1, impulse.dot(m_contact->t1));
                const btScalar* deltaV_t2 = &m_contact->jacobianData_t2.m_deltaVelocitiesUnitImpulse[0];
                multibodyLinkCol->m_multiBody->applyDeltaVeeMultiDof2(deltaV_t2, impulse.dot(m_contact->t2));
            }
        }
    }
//    va = getVa();
//    vb = getVb();
//    vr = vb - va;
//    btScalar dn1 = btDot(vr, cti.m_normal) / 150;
//    m_penetration += dn1;
    return residualSquare;
}
/* ================   Node vs. Rigid   =================== */
btDeformableNodeRigidContactConstraint::btDeformableNodeRigidContactConstraint(const btSoftBody::DeformableNodeRigidContact& contact, const btContactSolverInfo& infoGlobal)
    : m_node(contact.m_node)
    , btDeformableRigidContactConstraint(contact, infoGlobal)
    {
    }

btDeformableNodeRigidContactConstraint::btDeformableNodeRigidContactConstraint(const btDeformableNodeRigidContactConstraint& other)
: m_node(other.m_node)
, btDeformableRigidContactConstraint(other)
{
}

btVector3 btDeformableNodeRigidContactConstraint::getVb() const
{
    return m_node->m_v;
}


btVector3 btDeformableNodeRigidContactConstraint::getDv(const btSoftBody::Node* node) const
{
    return m_total_normal_dv + m_total_tangent_dv;
}

void btDeformableNodeRigidContactConstraint::applyImpulse(const btVector3& impulse)
{
    const btSoftBody::DeformableNodeRigidContact* contact = getContact();
    btVector3 dv = impulse * contact->m_c2;
    contact->m_node->m_v -= dv;
}

/* ================   Face vs. Rigid   =================== */
btDeformableFaceRigidContactConstraint::btDeformableFaceRigidContactConstraint(const btSoftBody::DeformableFaceRigidContact& contact, const btContactSolverInfo& infoGlobal, bool useStrainLimiting)
: m_face(contact.m_face)
, m_useStrainLimiting(useStrainLimiting)
, btDeformableRigidContactConstraint(contact, infoGlobal)
{
}

btDeformableFaceRigidContactConstraint::btDeformableFaceRigidContactConstraint(const btDeformableFaceRigidContactConstraint& other)
: m_face(other.m_face)
, m_useStrainLimiting(other.m_useStrainLimiting)
, btDeformableRigidContactConstraint(other)
{
}

btVector3 btDeformableFaceRigidContactConstraint::getVb() const
{
    const btSoftBody::DeformableFaceRigidContact* contact = getContact();
    btVector3 vb = m_face->m_n[0]->m_v * contact->m_bary[0] + m_face->m_n[1]->m_v * contact->m_bary[1] + m_face->m_n[2]->m_v * contact->m_bary[2];
    return vb;
}


btVector3 btDeformableFaceRigidContactConstraint::getDv(const btSoftBody::Node* node) const
{
    btVector3 face_dv = m_total_normal_dv + m_total_tangent_dv;
    const btSoftBody::DeformableFaceRigidContact* contact = getContact();
    if (m_face->m_n[0] == node)
    {
        return face_dv * contact->m_weights[0];
    }
    if (m_face->m_n[1] == node)
    {
        return face_dv * contact->m_weights[1];
    }
    btAssert(node == m_face->m_n[2]);
    return face_dv * contact->m_weights[2];
}

void btDeformableFaceRigidContactConstraint::applyImpulse(const btVector3& impulse)
{
    const btSoftBody::DeformableFaceRigidContact* contact = getContact();
    btVector3 dv = impulse * contact->m_c2;
    btSoftBody::Face* face = contact->m_face;
    
    btVector3& v0 = face->m_n[0]->m_v;
    btVector3& v1 = face->m_n[1]->m_v;
    btVector3& v2 = face->m_n[2]->m_v;
    const btScalar& im0 = face->m_n[0]->m_im;
    const btScalar& im1 = face->m_n[1]->m_im;
    const btScalar& im2 = face->m_n[2]->m_im;
    if (im0 > 0)
        v0 -= dv * contact->m_weights[0];
    if (im1 > 0)
        v1 -= dv * contact->m_weights[1];
    if (im2 > 0)
        v2 -= dv * contact->m_weights[2];
	if (m_useStrainLimiting)
	{
		btScalar relaxation = 1./btScalar(m_infoGlobal->m_numIterations);
		btScalar m01 = (relaxation/(im0 + im1));
		btScalar m02 = (relaxation/(im0 + im2));
		btScalar m12 = (relaxation/(im1 + im2));
		#ifdef USE_STRAIN_RATE_LIMITING
		// apply strain limiting to prevent the new velocity to change the current length of the edge by more than 1%.
		btScalar p = 0.01;
		btVector3& x0 = face->m_n[0]->m_x;
		btVector3& x1 = face->m_n[1]->m_x;
		btVector3& x2 = face->m_n[2]->m_x;
		const btVector3 x_diff[3] = {x1-x0, x2-x0, x2-x1};
		const btVector3 v_diff[3] = {v1-v0, v2-v0, v2-v1};
		btVector3 u[3];
		btScalar x_diff_dot_u, dn[3];
		btScalar dt = m_infoGlobal->m_timeStep;
		for (int i = 0; i < 3; ++i)
		{
			btScalar x_diff_norm = x_diff[i].safeNorm();
			btScalar x_diff_norm_new = (x_diff[i] + v_diff[i] * dt).safeNorm();
			btScalar strainRate = x_diff_norm_new/x_diff_norm;
			u[i] = v_diff[i];
			u[i].safeNormalize();
			if (x_diff_norm == 0 || (1-p <= strainRate && strainRate <= 1+p))
			{
				dn[i] = 0;
				continue;
			}
			x_diff_dot_u = btDot(x_diff[i], u[i]);
			btScalar s;
			if (1-p > strainRate)
			{
				s = 1/dt * (-x_diff_dot_u - btSqrt(x_diff_dot_u*x_diff_dot_u + (p*p-2*p) * x_diff_norm * x_diff_norm));
			}
			else
			{
				s = 1/dt * (-x_diff_dot_u + btSqrt(x_diff_dot_u*x_diff_dot_u + (p*p+2*p) * x_diff_norm * x_diff_norm));
			}
			//		x_diff_norm_new = (x_diff[i] + s * u[i] * dt).safeNorm();
			//		strainRate = x_diff_norm_new/x_diff_norm;
			dn[i] = s - v_diff[i].safeNorm();
		}
		btVector3 dv0 = im0 * (m01 * u[0]*(-dn[0]) + m02 * u[1]*-(dn[1]));
		btVector3 dv1 = im1 * (m01 * u[0]*(dn[0]) + m12 * u[2]*(-dn[2]));
		btVector3 dv2 = im2 * (m12 * u[2]*(dn[2]) + m02 * u[1]*(dn[1]));
	#else
		// apply strain limiting to prevent undamped modes
		btVector3 dv0 = im0 * (m01 * (v1-v0) + m02 * (v2-v0));
		btVector3 dv1 = im1 * (m01 * (v0-v1) + m12 * (v2-v1));
		btVector3 dv2 = im2 * (m12 * (v1-v2) + m02 * (v0-v2));
	#endif
		v0 += dv0;
		v1 += dv1;
		v2 += dv2;
	}
}

/* ================   Face vs. Node   =================== */
btDeformableFaceNodeContactConstraint::btDeformableFaceNodeContactConstraint(const btSoftBody::DeformableFaceNodeContact& contact, const btContactSolverInfo& infoGlobal)
: m_node(contact.m_node)
, m_face(contact.m_face)
, m_contact(&contact)
, btDeformableContactConstraint(contact.m_normal, infoGlobal)
{
    m_total_normal_dv.setZero();
    m_total_tangent_dv.setZero();
}

btVector3 btDeformableFaceNodeContactConstraint::getVa() const
{
    return m_node->m_v;
}

btVector3 btDeformableFaceNodeContactConstraint::getVb() const
{
    const btSoftBody::DeformableFaceNodeContact* contact = getContact();
    btVector3 vb = m_face->m_n[0]->m_v * contact->m_bary[0] + m_face->m_n[1]->m_v * contact->m_bary[1] + m_face->m_n[2]->m_v * contact->m_bary[2];
    return vb;
}

btVector3 btDeformableFaceNodeContactConstraint::getDv(const btSoftBody::Node* n) const
{
    btVector3 dv = m_total_normal_dv + m_total_tangent_dv;
    if (n == m_node)
        return dv;
    const btSoftBody::DeformableFaceNodeContact* contact = getContact();
    if (m_face->m_n[0] == n)
    {
        return dv * contact->m_weights[0];
    }
    if (m_face->m_n[1] == n)
    {
        return dv * contact->m_weights[1];
    }
    btAssert(n == m_face->m_n[2]);
    return dv * contact->m_weights[2];
}

btScalar btDeformableFaceNodeContactConstraint::solveConstraint(const btContactSolverInfo& infoGlobal)
{
    btVector3 va = getVa();
    btVector3 vb = getVb();
    btVector3 vr = vb - va;
    const btScalar dn = btDot(vr, m_contact->m_normal);
    // dn is the normal component of velocity diffrerence. Approximates the residual. // todo xuchenhan@: this prob needs to be scaled by dt
    btScalar residualSquare = dn*dn;
    btVector3 impulse = m_contact->m_c0 * vr;
    const btVector3 impulse_normal = m_contact->m_c0 * (m_contact->m_normal * dn);
    btVector3 impulse_tangent = impulse - impulse_normal;
    
    btVector3 old_total_tangent_dv = m_total_tangent_dv;
    // m_c2 is the inverse mass of the deformable node/face
    if (m_node->m_im > 0)
    {
        m_total_normal_dv -= impulse_normal * m_node->m_im;
        m_total_tangent_dv -= impulse_tangent * m_node->m_im;
    }
    else
    {
        m_total_normal_dv -= impulse_normal * m_contact->m_imf;
        m_total_tangent_dv -= impulse_tangent *  m_contact->m_imf;
    }
    
    if (m_total_normal_dv.dot(m_contact->m_normal) > 0)
    {
        // separating in the normal direction
        m_static = false;
        m_total_tangent_dv = btVector3(0,0,0);
        impulse_tangent.setZero();
    }
    else
    {
        if (m_total_normal_dv.norm() * m_contact->m_friction < m_total_tangent_dv.norm())
        {
            // dynamic friction
            // with dynamic friction, the impulse are still applied to the two objects colliding, however, it does not pose a constraint in the cg solve, hence the change to dv merely serves to update velocity in the contact iterations.
            m_static = false;
            if (m_total_tangent_dv.safeNorm() < SIMD_EPSILON)
            {
                m_total_tangent_dv = btVector3(0,0,0);
            }
            else
            {
                m_total_tangent_dv = m_total_tangent_dv.normalized() * m_total_normal_dv.safeNorm() * m_contact->m_friction;
            }
            impulse_tangent = -btScalar(1)/m_node->m_im * (m_total_tangent_dv - old_total_tangent_dv);
        }
        else
        {
            // static friction
            m_static = true;
        }
    }
    impulse = impulse_normal + impulse_tangent;
    // apply impulse to deformable nodes involved and change their velocities
    applyImpulse(impulse);
    return residualSquare;
}

void btDeformableFaceNodeContactConstraint::applyImpulse(const btVector3& impulse)
{
    const btSoftBody::DeformableFaceNodeContact* contact = getContact();
    btVector3 dva = impulse * contact->m_node->m_im;
    btVector3 dvb = impulse * contact->m_imf;
    if (contact->m_node->m_im > 0)
    {
        contact->m_node->m_v += dva;
    }
    
    btSoftBody::Face* face = contact->m_face;
    btVector3& v0 = face->m_n[0]->m_v;
    btVector3& v1 = face->m_n[1]->m_v;
    btVector3& v2 = face->m_n[2]->m_v;
    const btScalar& im0 = face->m_n[0]->m_im;
    const btScalar& im1 = face->m_n[1]->m_im;
    const btScalar& im2 = face->m_n[2]->m_im;
    if (im0 > 0)
    {
        v0 -= dvb * contact->m_weights[0];
    }
    if (im1 > 0)
    {
        v1 -= dvb * contact->m_weights[1];
    }
    if (im2 > 0)
    {
        v2 -= dvb * contact->m_weights[2];
    }
}