1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
/*
Written by Xuchen Han <xuchenhan2015@u.northwestern.edu>
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2019 Google Inc. http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_CONJUGATE_RESIDUAL_H
#define BT_CONJUGATE_RESIDUAL_H
#include <iostream>
#include <cmath>
#include <limits>
#include <LinearMath/btAlignedObjectArray.h>
#include <LinearMath/btVector3.h>
#include <LinearMath/btScalar.h>
#include "LinearMath/btQuickprof.h"
template <class MatrixX>
class btConjugateResidual
{
typedef btAlignedObjectArray<btVector3> TVStack;
TVStack r,p,z,temp_p, temp_r, best_x;
// temp_r = A*r
// temp_p = A*p
// z = M^(-1) * temp_p = M^(-1) * A * p
int max_iterations;
btScalar tolerance_squared, best_r;
public:
btConjugateResidual(const int max_it_in)
: max_iterations(max_it_in)
{
tolerance_squared = 1e-2;
}
virtual ~btConjugateResidual(){}
// return the number of iterations taken
int solve(MatrixX& A, TVStack& x, const TVStack& b, bool verbose = false)
{
BT_PROFILE("CRSolve");
btAssert(x.size() == b.size());
reinitialize(b);
// r = b - A * x --with assigned dof zeroed out
A.multiply(x, temp_r); // borrow temp_r here to store A*x
r = sub(b, temp_r);
// z = M^(-1) * r
A.precondition(r, z); // borrow z to store preconditioned r
r = z;
btScalar residual_norm = norm(r);
if (residual_norm <= tolerance_squared) {
if (verbose)
{
std::cout << "Iteration = 0" << std::endl;
std::cout << "Two norm of the residual = " << residual_norm << std::endl;
}
return 0;
}
p = r;
btScalar r_dot_Ar, r_dot_Ar_new;
// temp_p = A*p
A.multiply(p, temp_p);
// temp_r = A*r
temp_r = temp_p;
r_dot_Ar = dot(r, temp_r);
for (int k = 1; k <= max_iterations; k++) {
// z = M^(-1) * Ap
A.precondition(temp_p, z);
// alpha = r^T * A * r / (Ap)^T * M^-1 * Ap)
btScalar alpha = r_dot_Ar / dot(temp_p, z);
// x += alpha * p;
multAndAddTo(alpha, p, x);
// r -= alpha * z;
multAndAddTo(-alpha, z, r);
btScalar norm_r = norm(r);
if (norm_r < best_r)
{
best_x = x;
best_r = norm_r;
if (norm_r < tolerance_squared) {
if (verbose)
{
std::cout << "ConjugateResidual iterations " << k << std::endl;
}
return k;
}
else
{
if (verbose)
{
std::cout << "ConjugateResidual iterations " << k << " has residual "<< norm_r << std::endl;
}
}
}
// temp_r = A * r;
A.multiply(r, temp_r);
r_dot_Ar_new = dot(r, temp_r);
btScalar beta = r_dot_Ar_new/r_dot_Ar;
r_dot_Ar = r_dot_Ar_new;
// p = beta*p + r;
p = multAndAdd(beta, p, r);
// temp_p = beta*temp_p + temp_r;
temp_p = multAndAdd(beta, temp_p, temp_r);
}
if (verbose)
{
std::cout << "ConjugateResidual max iterations reached " << max_iterations << std::endl;
}
x = best_x;
return max_iterations;
}
void reinitialize(const TVStack& b)
{
r.resize(b.size());
p.resize(b.size());
z.resize(b.size());
temp_p.resize(b.size());
temp_r.resize(b.size());
best_x.resize(b.size());
best_r = SIMD_INFINITY;
}
TVStack sub(const TVStack& a, const TVStack& b)
{
// c = a-b
btAssert(a.size() == b.size());
TVStack c;
c.resize(a.size());
for (int i = 0; i < a.size(); ++i)
{
c[i] = a[i] - b[i];
}
return c;
}
btScalar squaredNorm(const TVStack& a)
{
return dot(a,a);
}
btScalar norm(const TVStack& a)
{
btScalar ret = 0;
for (int i = 0; i < a.size(); ++i)
{
for (int d = 0; d < 3; ++d)
{
ret = btMax(ret, btFabs(a[i][d]));
}
}
return ret;
}
btScalar dot(const TVStack& a, const TVStack& b)
{
btScalar ans(0);
for (int i = 0; i < a.size(); ++i)
ans += a[i].dot(b[i]);
return ans;
}
void multAndAddTo(btScalar s, const TVStack& a, TVStack& result)
{
// result += s*a
btAssert(a.size() == result.size());
for (int i = 0; i < a.size(); ++i)
result[i] += s * a[i];
}
TVStack multAndAdd(btScalar s, const TVStack& a, const TVStack& b)
{
// result = a*s + b
TVStack result;
result.resize(a.size());
for (int i = 0; i < a.size(); ++i)
result[i] = s * a[i] + b[i];
return result;
}
};
#endif /* btConjugateResidual_h */
|