summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletInverseDynamics/IDMath.cpp
blob: 99fe20e492874fa86d98c319bb7ae71756a83978 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
#include "IDMath.hpp"

#include <cmath>
#include <limits>

namespace btInverseDynamics {
static const idScalar kIsZero = 5 * std::numeric_limits<idScalar>::epsilon();
// requirements for axis length deviation from 1.0
// experimentally set from random euler angle rotation matrices
static const idScalar kAxisLengthEpsilon = 10 * kIsZero;

void setZero(vec3 &v) {
	v(0) = 0;
	v(1) = 0;
	v(2) = 0;
}

void setZero(vecx &v) {
	for (int i = 0; i < v.size(); i++) {
		v(i) = 0;
	}
}

void setZero(mat33 &m) {
	m(0, 0) = 0;
	m(0, 1) = 0;
	m(0, 2) = 0;
	m(1, 0) = 0;
	m(1, 1) = 0;
	m(1, 2) = 0;
	m(2, 0) = 0;
	m(2, 1) = 0;
	m(2, 2) = 0;
}

void skew(vec3& v, mat33* result) {
	(*result)(0, 0) = 0.0;
	(*result)(0, 1) = -v(2);
	(*result)(0, 2) = v(1);
	(*result)(1, 0) = v(2);
	(*result)(1, 1) = 0.0;
	(*result)(1, 2) = -v(0);
	(*result)(2, 0) = -v(1);
	(*result)(2, 1) = v(0);
	(*result)(2, 2) = 0.0;
}

idScalar maxAbs(const vecx &v) {
	idScalar result = 0.0;
	for (int i = 0; i < v.size(); i++) {
		const idScalar tmp = BT_ID_FABS(v(i));
		if (tmp > result) {
			result = tmp;
		}
	}
	return result;
}

idScalar maxAbs(const vec3 &v) {
	idScalar result = 0.0;
	for (int i = 0; i < 3; i++) {
		const idScalar tmp = BT_ID_FABS(v(i));
		if (tmp > result) {
			result = tmp;
		}
	}
	return result;
}

#if (defined BT_ID_HAVE_MAT3X)
idScalar maxAbsMat3x(const mat3x &m) {
    // only used for tests -- so just loop here for portability
    idScalar result = 0.0;
    for (idArrayIdx col = 0; col < m.cols(); col++) {
        for (idArrayIdx row = 0; row < 3; row++) {
            result = BT_ID_MAX(result, std::fabs(m(row, col)));
        }
    }
    return result;
}

void mul(const mat33 &a, const mat3x &b, mat3x *result) {
    if (b.cols() != result->cols()) {
        error_message("size missmatch. b.cols()= %d, result->cols()= %d\n",
                      static_cast<int>(b.cols()), static_cast<int>(result->cols()));
        abort();
    }

    for (idArrayIdx col = 0; col < b.cols(); col++) {
        const idScalar x = a(0,0)*b(0,col)+a(0,1)*b(1,col)+a(0,2)*b(2,col);
        const idScalar y = a(1,0)*b(0,col)+a(1,1)*b(1,col)+a(1,2)*b(2,col);
        const idScalar z = a(2,0)*b(0,col)+a(2,1)*b(1,col)+a(2,2)*b(2,col);
        setMat3xElem(0, col, x, result);
        setMat3xElem(1, col, y, result);
        setMat3xElem(2, col, z, result);
    }
}
void add(const mat3x &a, const mat3x &b, mat3x *result) {
    if (a.cols() != b.cols()) {
        error_message("size missmatch. a.cols()= %d, b.cols()= %d\n",
                      static_cast<int>(a.cols()), static_cast<int>(b.cols()));
        abort();
    }
    for (idArrayIdx col = 0; col < b.cols(); col++) {
        for (idArrayIdx row = 0; row < 3; row++) {
            setMat3xElem(row, col, a(row, col) + b(row, col), result);
        }
    }
}
void sub(const mat3x &a, const mat3x &b, mat3x *result) {
    if (a.cols() != b.cols()) {
        error_message("size missmatch. a.cols()= %d, b.cols()= %d\n",
                      static_cast<int>(a.cols()), static_cast<int>(b.cols()));
        abort();
    }
    for (idArrayIdx col = 0; col < b.cols(); col++) {
        for (idArrayIdx row = 0; row < 3; row++) {
            setMat3xElem(row, col, a(row, col) - b(row, col), result);
        }
    }
}
#endif

mat33 transformX(const idScalar &alpha) {
	mat33 T;
	const idScalar cos_alpha = BT_ID_COS(alpha);
	const idScalar sin_alpha = BT_ID_SIN(alpha);
	// [1  0 0]
	// [0  c s]
	// [0 -s c]
	T(0, 0) = 1.0;
	T(0, 1) = 0.0;
	T(0, 2) = 0.0;

	T(1, 0) = 0.0;
	T(1, 1) = cos_alpha;
	T(1, 2) = sin_alpha;

	T(2, 0) = 0.0;
	T(2, 1) = -sin_alpha;
	T(2, 2) = cos_alpha;

	return T;
}

mat33 transformY(const idScalar &beta) {
	mat33 T;
	const idScalar cos_beta = BT_ID_COS(beta);
	const idScalar sin_beta = BT_ID_SIN(beta);
	// [c 0 -s]
	// [0 1  0]
	// [s 0  c]
	T(0, 0) = cos_beta;
	T(0, 1) = 0.0;
	T(0, 2) = -sin_beta;

	T(1, 0) = 0.0;
	T(1, 1) = 1.0;
	T(1, 2) = 0.0;

	T(2, 0) = sin_beta;
	T(2, 1) = 0.0;
	T(2, 2) = cos_beta;

	return T;
}

mat33 transformZ(const idScalar &gamma) {
	mat33 T;
	const idScalar cos_gamma = BT_ID_COS(gamma);
	const idScalar sin_gamma = BT_ID_SIN(gamma);
	// [ c s 0]
	// [-s c 0]
	// [ 0 0 1]
	T(0, 0) = cos_gamma;
	T(0, 1) = sin_gamma;
	T(0, 2) = 0.0;

	T(1, 0) = -sin_gamma;
	T(1, 1) = cos_gamma;
	T(1, 2) = 0.0;

	T(2, 0) = 0.0;
	T(2, 1) = 0.0;
	T(2, 2) = 1.0;

	return T;
}

mat33 tildeOperator(const vec3 &v) {
	mat33 m;
	m(0, 0) = 0.0;
	m(0, 1) = -v(2);
	m(0, 2) = v(1);
	m(1, 0) = v(2);
	m(1, 1) = 0.0;
	m(1, 2) = -v(0);
	m(2, 0) = -v(1);
	m(2, 1) = v(0);
	m(2, 2) = 0.0;
	return m;
}

void getVecMatFromDH(idScalar theta, idScalar d, idScalar a, idScalar alpha, vec3 *r, mat33 *T) {
	const idScalar sa = BT_ID_SIN(alpha);
	const idScalar ca = BT_ID_COS(alpha);
	const idScalar st = BT_ID_SIN(theta);
	const idScalar ct = BT_ID_COS(theta);

	(*r)(0) = a;
	(*r)(1) = -sa * d;
	(*r)(2) = ca * d;

	(*T)(0, 0) = ct;
	(*T)(0, 1) = -st;
	(*T)(0, 2) = 0.0;

	(*T)(1, 0) = st * ca;
	(*T)(1, 1) = ct * ca;
	(*T)(1, 2) = -sa;

	(*T)(2, 0) = st * sa;
	(*T)(2, 1) = ct * sa;
	(*T)(2, 2) = ca;
}

void bodyTParentFromAxisAngle(const vec3 &axis, const idScalar &angle, mat33 *T) {
	const idScalar c = BT_ID_COS(angle);
	const idScalar s = -BT_ID_SIN(angle);
	const idScalar one_m_c = 1.0 - c;

	const idScalar &x = axis(0);
	const idScalar &y = axis(1);
	const idScalar &z = axis(2);

	(*T)(0, 0) = x * x * one_m_c + c;
	(*T)(0, 1) = x * y * one_m_c - z * s;
	(*T)(0, 2) = x * z * one_m_c + y * s;

	(*T)(1, 0) = x * y * one_m_c + z * s;
	(*T)(1, 1) = y * y * one_m_c + c;
	(*T)(1, 2) = y * z * one_m_c - x * s;

	(*T)(2, 0) = x * z * one_m_c - y * s;
	(*T)(2, 1) = y * z * one_m_c + x * s;
	(*T)(2, 2) = z * z * one_m_c + c;
}

bool isPositiveDefinite(const mat33 &m) {
	// test if all upper left determinants are positive
	if (m(0, 0) <= 0) {  // upper 1x1
		return false;
	}
	if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) <= 0) {  // upper 2x2
		return false;
	}
	if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) -
		 m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) +
		 m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < 0) {
		return false;
	}
	return true;
}

bool isPositiveSemiDefinite(const mat33 &m) {
	// test if all upper left determinants are positive
	if (m(0, 0) < 0) {  // upper 1x1
		return false;
	}
	if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) < 0) {  // upper 2x2
		return false;
	}
	if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) -
		 m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) +
		 m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < 0) {
		return false;
	}
	return true;
}

bool isPositiveSemiDefiniteFuzzy(const mat33 &m) {
	// test if all upper left determinants are positive
	if (m(0, 0) < -kIsZero) {  // upper 1x1
		return false;
	}
	if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) < -kIsZero) {  // upper 2x2
		return false;
	}
	if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) -
		 m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) +
		 m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < -kIsZero) {
		return false;
	}
	return true;
}

idScalar determinant(const mat33 &m) {
	return m(0, 0) * m(1, 1) * m(2, 2) + m(0, 1) * m(1, 2) * m(2, 0) + m(0, 2) * m(1, 0) * m(2, 1) -
		   m(0, 2) * m(1, 1) * m(2, 0) - m(0, 0) * m(1, 2) * m(2, 1) - m(0, 1) * m(1, 0) * m(2, 2);
}

bool isValidInertiaMatrix(const mat33 &I, const int index, bool has_fixed_joint) {
	// TODO(Thomas) do we really want this?
	//			  in cases where the inertia tensor about the center of mass is zero,
	//			  the determinant of the inertia tensor about the joint axis is almost
	//			  zero and can have a very small negative value.
	if (!isPositiveSemiDefiniteFuzzy(I)) {
		error_message("invalid inertia matrix for body %d, not positive definite "
					  "(fixed joint)\n",
					  index);
		error_message("matrix is:\n"
					  "[%.20e %.20e %.20e;\n"
					  "%.20e %.20e %.20e;\n"
					  "%.20e %.20e %.20e]\n",
					  I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1),
					  I(2, 2));

		return false;
	}

	// check triangle inequality, must have I(i,i)+I(j,j)>=I(k,k)
	if (!has_fixed_joint) {
		if (I(0, 0) + I(1, 1) < I(2, 2)) {
			error_message("invalid inertia tensor for body %d, I(0,0) + I(1,1) < I(2,2)\n", index);
			error_message("matrix is:\n"
						  "[%.20e %.20e %.20e;\n"
						  "%.20e %.20e %.20e;\n"
						  "%.20e %.20e %.20e]\n",
						  I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1),
						  I(2, 2));
			return false;
		}
		if (I(0, 0) + I(1, 1) < I(2, 2)) {
			error_message("invalid inertia tensor for body %d, I(0,0) + I(1,1) < I(2,2)\n", index);
			error_message("matrix is:\n"
						  "[%.20e %.20e %.20e;\n"
						  "%.20e %.20e %.20e;\n"
						  "%.20e %.20e %.20e]\n",
						  I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1),
						  I(2, 2));
			return false;
		}
		if (I(1, 1) + I(2, 2) < I(0, 0)) {
			error_message("invalid inertia tensor for body %d, I(1,1) + I(2,2) < I(0,0)\n", index);
			error_message("matrix is:\n"
						  "[%.20e %.20e %.20e;\n"
						  "%.20e %.20e %.20e;\n"
						  "%.20e %.20e %.20e]\n",
						  I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1),
						  I(2, 2));
			return false;
		}
	}
	// check positive/zero diagonal elements
	for (int i = 0; i < 3; i++) {
		if (I(i, i) < 0) {  // accept zero
			error_message("invalid inertia tensor, I(%d,%d)= %e <0\n", i, i, I(i, i));
			return false;
		}
	}
	// check symmetry
	if (BT_ID_FABS(I(1, 0) - I(0, 1)) > kIsZero) {
		error_message("invalid inertia tensor for body %d I(1,0)!=I(0,1). I(1,0)-I(0,1)= "
					  "%e\n",
					  index, I(1, 0) - I(0, 1));
		return false;
	}
	if (BT_ID_FABS(I(2, 0) - I(0, 2)) > kIsZero) {
		error_message("invalid inertia tensor for body %d I(2,0)!=I(0,2). I(2,0)-I(0,2)= "
					  "%e\n",
					  index, I(2, 0) - I(0, 2));
		return false;
	}
	if (BT_ID_FABS(I(1, 2) - I(2, 1)) > kIsZero) {
		error_message("invalid inertia tensor body %d I(1,2)!=I(2,1). I(1,2)-I(2,1)= %e\n", index,
					  I(1, 2) - I(2, 1));
		return false;
	}
	return true;
}

bool isValidTransformMatrix(const mat33 &m) {
#define print_mat(x)																			   \
	error_message("matrix is [%e, %e, %e; %e, %e, %e; %e, %e, %e]\n", x(0, 0), x(0, 1), x(0, 2),   \
				  x(1, 0), x(1, 1), x(1, 2), x(2, 0), x(2, 1), x(2, 2))

	// check for unit length column vectors
	for (int i = 0; i < 3; i++) {
		const idScalar length_minus_1 =
			BT_ID_FABS(m(0, i) * m(0, i) + m(1, i) * m(1, i) + m(2, i) * m(2, i) - 1.0);
		if (length_minus_1 > kAxisLengthEpsilon) {
			error_message("Not a valid rotation matrix (column %d not unit length)\n"
						  "column = [%.18e %.18e %.18e]\n"
						  "length-1.0= %.18e\n",
						  i, m(0, i), m(1, i), m(2, i), length_minus_1);
			print_mat(m);
			return false;
		}
	}
	// check for orthogonal column vectors
	if (BT_ID_FABS(m(0, 0) * m(0, 1) + m(1, 0) * m(1, 1) + m(2, 0) * m(2, 1)) > kAxisLengthEpsilon) {
		error_message("Not a valid rotation matrix (columns 0 and 1 not orthogonal)\n");
		print_mat(m);
		return false;
	}
	if (BT_ID_FABS(m(0, 0) * m(0, 2) + m(1, 0) * m(1, 2) + m(2, 0) * m(2, 2)) > kAxisLengthEpsilon) {
		error_message("Not a valid rotation matrix (columns 0 and 2 not orthogonal)\n");
		print_mat(m);
		return false;
	}
	if (BT_ID_FABS(m(0, 1) * m(0, 2) + m(1, 1) * m(1, 2) + m(2, 1) * m(2, 2)) > kAxisLengthEpsilon) {
		error_message("Not a valid rotation matrix (columns 0 and 2 not orthogonal)\n");
		print_mat(m);
		return false;
	}
	// check determinant (rotation not reflection)
	if (determinant(m) <= 0) {
		error_message("Not a valid rotation matrix (determinant <=0)\n");
		print_mat(m);
		return false;
	}
	return true;
}

bool isUnitVector(const vec3 &vector) {
	return BT_ID_FABS(vector(0) * vector(0) + vector(1) * vector(1) + vector(2) * vector(2) - 1.0) <
		   kIsZero;
}

vec3 rpyFromMatrix(const mat33 &rot) {
	vec3 rpy;
	rpy(2) = BT_ID_ATAN2(-rot(1, 0), rot(0, 0));
	rpy(1) = BT_ID_ATAN2(rot(2, 0), BT_ID_COS(rpy(2)) * rot(0, 0) - BT_ID_SIN(rpy(0)) * rot(1, 0));
	rpy(0) = BT_ID_ATAN2(-rot(2, 0), rot(2, 2));
	return rpy;
}
}