summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h
blob: f18c4ea41b0b958c0c233ade7eeeba531c98ea11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2013 Erwin Coumans  http://bulletphysics.org

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///original version written by Erwin Coumans, October 2013

#ifndef BT_LEMKE_SOLVER_H
#define BT_LEMKE_SOLVER_H

#include "btMLCPSolverInterface.h"
#include "btLemkeAlgorithm.h"

///The btLemkeSolver is based on "Fast Implementation of Lemke’s Algorithm for Rigid Body Contact Simulation (John E. Lloyd) "
///It is a slower but more accurate solver. Increase the m_maxLoops for better convergence, at the cost of more CPU time.
///The original implementation of the btLemkeAlgorithm was done by Kilian Grundl from the MBSim team
class btLemkeSolver : public btMLCPSolverInterface
{
protected:
public:
	btScalar m_maxValue;
	int m_debugLevel;
	int m_maxLoops;
	bool m_useLoHighBounds;

	btLemkeSolver()
		: m_maxValue(100000),
		  m_debugLevel(0),
		  m_maxLoops(1000),
		  m_useLoHighBounds(true)
	{
	}
	virtual bool solveMLCP(const btMatrixXu& A, const btVectorXu& b, btVectorXu& x, const btVectorXu& lo, const btVectorXu& hi, const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
	{
		if (m_useLoHighBounds)
		{
			BT_PROFILE("btLemkeSolver::solveMLCP");
			int n = A.rows();
			if (0 == n)
				return true;

			bool fail = false;

			btVectorXu solution(n);
			btVectorXu q1;
			q1.resize(n);
			for (int row = 0; row < n; row++)
			{
				q1[row] = -b[row];
			}

			//		cout << "A" << endl;
			//		cout << A << endl;

			/////////////////////////////////////

			//slow matrix inversion, replace with LU decomposition
			btMatrixXu A1;
			btMatrixXu B(n, n);
			{
				//BT_PROFILE("inverse(slow)");
				A1.resize(A.rows(), A.cols());
				for (int row = 0; row < A.rows(); row++)
				{
					for (int col = 0; col < A.cols(); col++)
					{
						A1.setElem(row, col, A(row, col));
					}
				}

				btMatrixXu matrix;
				matrix.resize(n, 2 * n);
				for (int row = 0; row < n; row++)
				{
					for (int col = 0; col < n; col++)
					{
						matrix.setElem(row, col, A1(row, col));
					}
				}

				btScalar ratio, a;
				int i, j, k;
				for (i = 0; i < n; i++)
				{
					for (j = n; j < 2 * n; j++)
					{
						if (i == (j - n))
							matrix.setElem(i, j, 1.0);
						else
							matrix.setElem(i, j, 0.0);
					}
				}
				for (i = 0; i < n; i++)
				{
					for (j = 0; j < n; j++)
					{
						if (i != j)
						{
							btScalar v = matrix(i, i);
							if (btFuzzyZero(v))
							{
								a = 0.000001f;
							}
							ratio = matrix(j, i) / matrix(i, i);
							for (k = 0; k < 2 * n; k++)
							{
								matrix.addElem(j, k, -ratio * matrix(i, k));
							}
						}
					}
				}
				for (i = 0; i < n; i++)
				{
					a = matrix(i, i);
					if (btFuzzyZero(a))
					{
						a = 0.000001f;
					}
					btScalar invA = 1.f / a;
					for (j = 0; j < 2 * n; j++)
					{
						matrix.mulElem(i, j, invA);
					}
				}

				for (int row = 0; row < n; row++)
				{
					for (int col = 0; col < n; col++)
					{
						B.setElem(row, col, matrix(row, n + col));
					}
				}
			}

			btMatrixXu b1(n, 1);

			btMatrixXu M(n * 2, n * 2);
			for (int row = 0; row < n; row++)
			{
				b1.setElem(row, 0, -b[row]);
				for (int col = 0; col < n; col++)
				{
					btScalar v = B(row, col);
					M.setElem(row, col, v);
					M.setElem(n + row, n + col, v);
					M.setElem(n + row, col, -v);
					M.setElem(row, n + col, -v);
				}
			}

			btMatrixXu Bb1 = B * b1;
			//		q = [ (-B*b1 - lo)'   (hi + B*b1)' ]'

			btVectorXu qq;
			qq.resize(n * 2);
			for (int row = 0; row < n; row++)
			{
				qq[row] = -Bb1(row, 0) - lo[row];
				qq[n + row] = Bb1(row, 0) + hi[row];
			}

			btVectorXu z1;

			btMatrixXu y1;
			y1.resize(n, 1);
			btLemkeAlgorithm lemke(M, qq, m_debugLevel);
			{
				//BT_PROFILE("lemke.solve");
				lemke.setSystem(M, qq);
				z1 = lemke.solve(m_maxLoops);
			}
			for (int row = 0; row < n; row++)
			{
				y1.setElem(row, 0, z1[2 * n + row] - z1[3 * n + row]);
			}
			btMatrixXu y1_b1(n, 1);
			for (int i = 0; i < n; i++)
			{
				y1_b1.setElem(i, 0, y1(i, 0) - b1(i, 0));
			}

			btMatrixXu x1;

			x1 = B * (y1_b1);

			for (int row = 0; row < n; row++)
			{
				solution[row] = x1(row, 0);  //n];
			}

			int errorIndexMax = -1;
			int errorIndexMin = -1;
			float errorValueMax = -1e30;
			float errorValueMin = 1e30;

			for (int i = 0; i < n; i++)
			{
				x[i] = solution[i];
				volatile btScalar check = x[i];
				if (x[i] != check)
				{
					//printf("Lemke result is #NAN\n");
					x.setZero();
					return false;
				}

				//this is some hack/safety mechanism, to discard invalid solutions from the Lemke solver
				//we need to figure out why it happens, and fix it, or detect it properly)
				if (x[i] > m_maxValue)
				{
					if (x[i] > errorValueMax)
					{
						fail = true;
						errorIndexMax = i;
						errorValueMax = x[i];
					}
					////printf("x[i] = %f,",x[i]);
				}
				if (x[i] < -m_maxValue)
				{
					if (x[i] < errorValueMin)
					{
						errorIndexMin = i;
						errorValueMin = x[i];
						fail = true;
						//printf("x[i] = %f,",x[i]);
					}
				}
			}
			if (fail)
			{
				int m_errorCountTimes = 0;
				if (errorIndexMin < 0)
					errorValueMin = 0.f;
				if (errorIndexMax < 0)
					errorValueMax = 0.f;
				m_errorCountTimes++;
				//	printf("Error (x[%d] = %f, x[%d] = %f), resetting %d times\n", errorIndexMin,errorValueMin, errorIndexMax, errorValueMax, errorCountTimes++);
				for (int i = 0; i < n; i++)
				{
					x[i] = 0.f;
				}
			}
			return !fail;
		}
		else

		{
			int dimension = A.rows();
			if (0 == dimension)
				return true;

			//		printf("================ solving using Lemke/Newton/Fixpoint\n");

			btVectorXu q;
			q.resize(dimension);
			for (int row = 0; row < dimension; row++)
			{
				q[row] = -b[row];
			}

			btLemkeAlgorithm lemke(A, q, m_debugLevel);

			lemke.setSystem(A, q);

			btVectorXu solution = lemke.solve(m_maxLoops);

			//check solution

			bool fail = false;
			int errorIndexMax = -1;
			int errorIndexMin = -1;
			float errorValueMax = -1e30;
			float errorValueMin = 1e30;

			for (int i = 0; i < dimension; i++)
			{
				x[i] = solution[i + dimension];
				volatile btScalar check = x[i];
				if (x[i] != check)
				{
					x.setZero();
					return false;
				}

				//this is some hack/safety mechanism, to discard invalid solutions from the Lemke solver
				//we need to figure out why it happens, and fix it, or detect it properly)
				if (x[i] > m_maxValue)
				{
					if (x[i] > errorValueMax)
					{
						fail = true;
						errorIndexMax = i;
						errorValueMax = x[i];
					}
					////printf("x[i] = %f,",x[i]);
				}
				if (x[i] < -m_maxValue)
				{
					if (x[i] < errorValueMin)
					{
						errorIndexMin = i;
						errorValueMin = x[i];
						fail = true;
						//printf("x[i] = %f,",x[i]);
					}
				}
			}
			if (fail)
			{
				static int errorCountTimes = 0;
				if (errorIndexMin < 0)
					errorValueMin = 0.f;
				if (errorIndexMax < 0)
					errorValueMax = 0.f;
				printf("Error (x[%d] = %f, x[%d] = %f), resetting %d times\n", errorIndexMin, errorValueMin, errorIndexMax, errorValueMax, errorCountTimes++);
				for (int i = 0; i < dimension; i++)
				{
					x[i] = 0.f;
				}
			}

			return !fail;
		}
		return true;
	}
};

#endif  //BT_LEMKE_SOLVER_H