1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
|
/* Copyright (C) 2004-2013 MBSim Development Team
Code was converted for the Bullet Continuous Collision Detection and Physics Library
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
//The original version is here
//https://code.google.com/p/mbsim-env/source/browse/trunk/kernel/mbsim/numerics/linear_complementarity_problem/lemke_algorithm.cc
//This file is re-distributed under the ZLib license, with permission of the original author
//Math library was replaced from fmatvec to a the file src/LinearMath/btMatrixX.h
//STL/std::vector replaced by btAlignedObjectArray
#include "btLemkeAlgorithm.h"
#undef BT_DEBUG_OSTREAM
#ifdef BT_DEBUG_OSTREAM
using namespace std;
#endif //BT_DEBUG_OSTREAM
btScalar btMachEps()
{
static bool calculated = false;
static btScalar machEps = btScalar(1.);
if (!calculated)
{
do
{
machEps /= btScalar(2.0);
// If next epsilon yields 1, then break, because current
// epsilon is the machine epsilon.
} while ((btScalar)(1.0 + (machEps / btScalar(2.0))) != btScalar(1.0));
// printf( "\nCalculated Machine epsilon: %G\n", machEps );
calculated = true;
}
return machEps;
}
btScalar btEpsRoot()
{
static btScalar epsroot = 0.;
static bool alreadyCalculated = false;
if (!alreadyCalculated)
{
epsroot = btSqrt(btMachEps());
alreadyCalculated = true;
}
return epsroot;
}
btVectorXu btLemkeAlgorithm::solve(unsigned int maxloops /* = 0*/)
{
steps = 0;
int dim = m_q.size();
#ifdef BT_DEBUG_OSTREAM
if (DEBUGLEVEL >= 1)
{
cout << "Dimension = " << dim << endl;
}
#endif //BT_DEBUG_OSTREAM
btVectorXu solutionVector(2 * dim);
solutionVector.setZero();
//, INIT, 0.);
btMatrixXu ident(dim, dim);
ident.setIdentity();
#ifdef BT_DEBUG_OSTREAM
cout << m_M << std::endl;
#endif
btMatrixXu mNeg = m_M.negative();
btMatrixXu A(dim, 2 * dim + 2);
//
A.setSubMatrix(0, 0, dim - 1, dim - 1, ident);
A.setSubMatrix(0, dim, dim - 1, 2 * dim - 1, mNeg);
A.setSubMatrix(0, 2 * dim, dim - 1, 2 * dim, -1.f);
A.setSubMatrix(0, 2 * dim + 1, dim - 1, 2 * dim + 1, m_q);
#ifdef BT_DEBUG_OSTREAM
cout << A << std::endl;
#endif //BT_DEBUG_OSTREAM
// btVectorXu q_;
// q_ >> A(0, 2 * dim + 1, dim - 1, 2 * dim + 1);
btAlignedObjectArray<int> basis;
//At first, all w-values are in the basis
for (int i = 0; i < dim; i++)
basis.push_back(i);
int pivotRowIndex = -1;
btScalar minValue = 1e30f;
bool greaterZero = true;
for (int i = 0; i < dim; i++)
{
btScalar v = A(i, 2 * dim + 1);
if (v < minValue)
{
minValue = v;
pivotRowIndex = i;
}
if (v < 0)
greaterZero = false;
}
// int pivotRowIndex = q_.minIndex();//minIndex(q_); // first row is that with lowest q-value
int z0Row = pivotRowIndex; // remember the col of z0 for ending algorithm afterwards
int pivotColIndex = 2 * dim; // first col is that of z0
#ifdef BT_DEBUG_OSTREAM
if (DEBUGLEVEL >= 3)
{
// cout << "A: " << A << endl;
cout << "pivotRowIndex " << pivotRowIndex << endl;
cout << "pivotColIndex " << pivotColIndex << endl;
cout << "Basis: ";
for (int i = 0; i < basis.size(); i++)
cout << basis[i] << " ";
cout << endl;
}
#endif //BT_DEBUG_OSTREAM
if (!greaterZero)
{
if (maxloops == 0)
{
maxloops = 100;
// maxloops = UINT_MAX; //TODO: not a really nice way, problem is: maxloops should be 2^dim (=1<<dim), but this could exceed UINT_MAX and thus the result would be 0 and therefore the lemke algorithm wouldn't start but probably would find a solution within less then UINT_MAX steps. Therefore this constant is used as a upper border right now...
}
/*start looping*/
for (steps = 0; steps < maxloops; steps++)
{
GaussJordanEliminationStep(A, pivotRowIndex, pivotColIndex, basis);
#ifdef BT_DEBUG_OSTREAM
if (DEBUGLEVEL >= 3)
{
// cout << "A: " << A << endl;
cout << "pivotRowIndex " << pivotRowIndex << endl;
cout << "pivotColIndex " << pivotColIndex << endl;
cout << "Basis: ";
for (int i = 0; i < basis.size(); i++)
cout << basis[i] << " ";
cout << endl;
}
#endif //BT_DEBUG_OSTREAM
int pivotColIndexOld = pivotColIndex;
/*find new column index */
if (basis[pivotRowIndex] < dim) //if a w-value left the basis get in the correspondent z-value
pivotColIndex = basis[pivotRowIndex] + dim;
else
//else do it the other way round and get in the corresponding w-value
pivotColIndex = basis[pivotRowIndex] - dim;
/*the column becomes part of the basis*/
basis[pivotRowIndex] = pivotColIndexOld;
pivotRowIndex = findLexicographicMinimum(A, pivotColIndex);
if (z0Row == pivotRowIndex)
{ //if z0 leaves the basis the solution is found --> one last elimination step is necessary
GaussJordanEliminationStep(A, pivotRowIndex, pivotColIndex, basis);
basis[pivotRowIndex] = pivotColIndex; //update basis
break;
}
}
#ifdef BT_DEBUG_OSTREAM
if (DEBUGLEVEL >= 1)
{
cout << "Number of loops: " << steps << endl;
cout << "Number of maximal loops: " << maxloops << endl;
}
#endif //BT_DEBUG_OSTREAM
if (!validBasis(basis))
{
info = -1;
#ifdef BT_DEBUG_OSTREAM
if (DEBUGLEVEL >= 1)
cerr << "Lemke-Algorithm ended with Ray-Termination (no valid solution)." << endl;
#endif //BT_DEBUG_OSTREAM
return solutionVector;
}
}
#ifdef BT_DEBUG_OSTREAM
if (DEBUGLEVEL >= 2)
{
// cout << "A: " << A << endl;
cout << "pivotRowIndex " << pivotRowIndex << endl;
cout << "pivotColIndex " << pivotColIndex << endl;
}
#endif //BT_DEBUG_OSTREAM
for (int i = 0; i < basis.size(); i++)
{
solutionVector[basis[i]] = A(i, 2 * dim + 1); //q_[i];
}
info = 0;
return solutionVector;
}
int btLemkeAlgorithm::findLexicographicMinimum(const btMatrixXu& A, const int& pivotColIndex)
{
int RowIndex = 0;
int dim = A.rows();
btAlignedObjectArray<btVectorXu> Rows;
for (int row = 0; row < dim; row++)
{
btVectorXu vec(dim + 1);
vec.setZero(); //, INIT, 0.)
Rows.push_back(vec);
btScalar a = A(row, pivotColIndex);
if (a > 0)
{
Rows[row][0] = A(row, 2 * dim + 1) / a;
Rows[row][1] = A(row, 2 * dim) / a;
for (int j = 2; j < dim + 1; j++)
Rows[row][j] = A(row, j - 1) / a;
#ifdef BT_DEBUG_OSTREAM
// if (DEBUGLEVEL) {
// cout << "Rows(" << row << ") = " << Rows[row] << endl;
// }
#endif
}
}
for (int i = 0; i < Rows.size(); i++)
{
if (Rows[i].nrm2() > 0.)
{
int j = 0;
for (; j < Rows.size(); j++)
{
if (i != j)
{
if (Rows[j].nrm2() > 0.)
{
btVectorXu test(dim + 1);
for (int ii = 0; ii < dim + 1; ii++)
{
test[ii] = Rows[j][ii] - Rows[i][ii];
}
//=Rows[j] - Rows[i]
if (!LexicographicPositive(test))
break;
}
}
}
if (j == Rows.size())
{
RowIndex += i;
break;
}
}
}
return RowIndex;
}
bool btLemkeAlgorithm::LexicographicPositive(const btVectorXu& v)
{
int i = 0;
// if (DEBUGLEVEL)
// cout << "v " << v << endl;
while (i < v.size() - 1 && fabs(v[i]) < btMachEps())
i++;
if (v[i] > 0)
return true;
return false;
}
void btLemkeAlgorithm::GaussJordanEliminationStep(btMatrixXu& A, int pivotRowIndex, int pivotColumnIndex, const btAlignedObjectArray<int>& basis)
{
btScalar a = -1 / A(pivotRowIndex, pivotColumnIndex);
#ifdef BT_DEBUG_OSTREAM
cout << A << std::endl;
#endif
for (int i = 0; i < A.rows(); i++)
{
if (i != pivotRowIndex)
{
for (int j = 0; j < A.cols(); j++)
{
if (j != pivotColumnIndex)
{
btScalar v = A(i, j);
v += A(pivotRowIndex, j) * A(i, pivotColumnIndex) * a;
A.setElem(i, j, v);
}
}
}
}
#ifdef BT_DEBUG_OSTREAM
cout << A << std::endl;
#endif //BT_DEBUG_OSTREAM
for (int i = 0; i < A.cols(); i++)
{
A.mulElem(pivotRowIndex, i, -a);
}
#ifdef BT_DEBUG_OSTREAM
cout << A << std::endl;
#endif //#ifdef BT_DEBUG_OSTREAM
for (int i = 0; i < A.rows(); i++)
{
if (i != pivotRowIndex)
{
A.setElem(i, pivotColumnIndex, 0);
}
}
#ifdef BT_DEBUG_OSTREAM
cout << A << std::endl;
#endif //#ifdef BT_DEBUG_OSTREAM
}
bool btLemkeAlgorithm::greaterZero(const btVectorXu& vector)
{
bool isGreater = true;
for (int i = 0; i < vector.size(); i++)
{
if (vector[i] < 0)
{
isGreater = false;
break;
}
}
return isGreater;
}
bool btLemkeAlgorithm::validBasis(const btAlignedObjectArray<int>& basis)
{
bool isValid = true;
for (int i = 0; i < basis.size(); i++)
{
if (basis[i] >= basis.size() * 2)
{ //then z0 is in the base
isValid = false;
break;
}
}
return isValid;
}
|