summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.h
blob: 903832770ae78153a2e707c21d0ab3abef13923c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
/*************************************************************************
 *                                                                       *
 * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.       *
 * All rights reserved.  Email: russ@q12.org   Web: www.q12.org          *
 *                                                                       *
 * This library is free software; you can redistribute it and/or         *
 * modify it under the terms of                                          * 
 *   The BSD-style license that is included with this library in         *
 *   the file LICENSE-BSD.TXT.                                           *
 *                                                                       *
 * This library is distributed in the hope that it will be useful,       *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files    *
 * LICENSE.TXT and LICENSE-BSD.TXT for more details.                     *
 *                                                                       *
 *************************************************************************/

/*

given (A,b,lo,hi), solve the LCP problem: A*x = b+w, where each x(i),w(i)
satisfies one of
	(1) x = lo, w >= 0
	(2) x = hi, w <= 0
	(3) lo < x < hi, w = 0
A is a matrix of dimension n*n, everything else is a vector of size n*1.
lo and hi can be +/- dInfinity as needed. the first `nub' variables are
unbounded, i.e. hi and lo are assumed to be +/- dInfinity.

we restrict lo(i) <= 0 and hi(i) >= 0.

the original data (A,b) may be modified by this function.

if the `findex' (friction index) parameter is nonzero, it points to an array
of index values. in this case constraints that have findex[i] >= 0 are
special. all non-special constraints are solved for, then the lo and hi values
for the special constraints are set:
  hi[i] = abs( hi[i] * x[findex[i]] )
  lo[i] = -hi[i]
and the solution continues. this mechanism allows a friction approximation
to be implemented. the first `nub' variables are assumed to have findex < 0.

*/


#ifndef _BT_LCP_H_
#define _BT_LCP_H_

#include <stdlib.h>
#include <stdio.h>
#include <assert.h>


#include "LinearMath/btScalar.h"
#include "LinearMath/btAlignedObjectArray.h"

struct btDantzigScratchMemory
{
	btAlignedObjectArray<btScalar> m_scratch;
	btAlignedObjectArray<btScalar> L;
	btAlignedObjectArray<btScalar> d;
	btAlignedObjectArray<btScalar> delta_w;
	btAlignedObjectArray<btScalar> delta_x;
	btAlignedObjectArray<btScalar> Dell;
	btAlignedObjectArray<btScalar> ell;
	btAlignedObjectArray<btScalar*> Arows;
	btAlignedObjectArray<int> p;
	btAlignedObjectArray<int> C;
	btAlignedObjectArray<bool> state;
};

//return false if solving failed
bool btSolveDantzigLCP (int n, btScalar *A, btScalar *x, btScalar *b, btScalar *w,
	int nub, btScalar *lo, btScalar *hi, int *findex,btDantzigScratchMemory& scratch);



#endif //_BT_LCP_H_