1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
|
/*
* PURPOSE:
* Class representing an articulated rigid body. Stores the body's
* current state, allows forces and torques to be set, handles
* timestepping and implements Featherstone's algorithm.
*
* COPYRIGHT:
* Copyright (C) Stephen Thompson, <stephen@solarflare.org.uk>, 2011-2013
* Portions written By Erwin Coumans: connection to LCP solver, various multibody constraints, replacing Eigen math library by Bullet LinearMath and a dedicated 6x6 matrix inverse (solveImatrix)
* Portions written By Jakub Stepien: support for multi-DOF constraints, introduction of spatial algebra and several other improvements
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_MULTIBODY_H
#define BT_MULTIBODY_H
#include "LinearMath/btScalar.h"
#include "LinearMath/btVector3.h"
#include "LinearMath/btQuaternion.h"
#include "LinearMath/btMatrix3x3.h"
#include "LinearMath/btAlignedObjectArray.h"
///serialization data, don't change them if you are not familiar with the details of the serialization mechanisms
#ifdef BT_USE_DOUBLE_PRECISION
#define btMultiBodyData btMultiBodyDoubleData
#define btMultiBodyDataName "btMultiBodyDoubleData"
#define btMultiBodyLinkData btMultiBodyLinkDoubleData
#define btMultiBodyLinkDataName "btMultiBodyLinkDoubleData"
#else
#define btMultiBodyData btMultiBodyFloatData
#define btMultiBodyDataName "btMultiBodyFloatData"
#define btMultiBodyLinkData btMultiBodyLinkFloatData
#define btMultiBodyLinkDataName "btMultiBodyLinkFloatData"
#endif //BT_USE_DOUBLE_PRECISION
#include "btMultiBodyLink.h"
class btMultiBodyLinkCollider;
ATTRIBUTE_ALIGNED16(class)
btMultiBody
{
public:
BT_DECLARE_ALIGNED_ALLOCATOR();
//
// initialization
//
btMultiBody(int n_links, // NOT including the base
btScalar mass, // mass of base
const btVector3 &inertia, // inertia of base, in base frame; assumed diagonal
bool fixedBase, // whether the base is fixed (true) or can move (false)
bool canSleep, bool deprecatedMultiDof = true);
virtual ~btMultiBody();
//note: fixed link collision with parent is always disabled
void setupFixed(int i, //linkIndex
btScalar mass,
const btVector3 &inertia,
int parent,
const btQuaternion &rotParentToThis,
const btVector3 &parentComToThisPivotOffset,
const btVector3 &thisPivotToThisComOffset, bool deprecatedDisableParentCollision = true);
void setupPrismatic(int i,
btScalar mass,
const btVector3 &inertia,
int parent,
const btQuaternion &rotParentToThis,
const btVector3 &jointAxis,
const btVector3 &parentComToThisPivotOffset,
const btVector3 &thisPivotToThisComOffset,
bool disableParentCollision);
void setupRevolute(int i, // 0 to num_links-1
btScalar mass,
const btVector3 &inertia,
int parentIndex,
const btQuaternion &rotParentToThis, // rotate points in parent frame to this frame, when q = 0
const btVector3 &jointAxis, // in my frame
const btVector3 &parentComToThisPivotOffset, // vector from parent COM to joint axis, in PARENT frame
const btVector3 &thisPivotToThisComOffset, // vector from joint axis to my COM, in MY frame
bool disableParentCollision = false);
void setupSpherical(int i, // linkIndex, 0 to num_links-1
btScalar mass,
const btVector3 &inertia,
int parent,
const btQuaternion &rotParentToThis, // rotate points in parent frame to this frame, when q = 0
const btVector3 &parentComToThisPivotOffset, // vector from parent COM to joint axis, in PARENT frame
const btVector3 &thisPivotToThisComOffset, // vector from joint axis to my COM, in MY frame
bool disableParentCollision = false);
void setupPlanar(int i, // 0 to num_links-1
btScalar mass,
const btVector3 &inertia,
int parent,
const btQuaternion &rotParentToThis, // rotate points in parent frame to this frame, when q = 0
const btVector3 &rotationAxis,
const btVector3 &parentComToThisComOffset, // vector from parent COM to this COM, in PARENT frame
bool disableParentCollision = false);
const btMultibodyLink &getLink(int index) const
{
return m_links[index];
}
btMultibodyLink &getLink(int index)
{
return m_links[index];
}
void setBaseCollider(btMultiBodyLinkCollider * collider) //collider can be NULL to disable collision for the base
{
m_baseCollider = collider;
}
const btMultiBodyLinkCollider *getBaseCollider() const
{
return m_baseCollider;
}
btMultiBodyLinkCollider *getBaseCollider()
{
return m_baseCollider;
}
const btMultiBodyLinkCollider *getLinkCollider(int index) const
{
if (index >= 0 && index < getNumLinks())
{
return getLink(index).m_collider;
}
return 0;
}
btMultiBodyLinkCollider *getLinkCollider(int index)
{
if (index >= 0 && index < getNumLinks())
{
return getLink(index).m_collider;
}
return 0;
}
//
// get parent
// input: link num from 0 to num_links-1
// output: link num from 0 to num_links-1, OR -1 to mean the base.
//
int getParent(int link_num) const;
//
// get number of m_links, masses, moments of inertia
//
int getNumLinks() const { return m_links.size(); }
int getNumDofs() const { return m_dofCount; }
int getNumPosVars() const { return m_posVarCnt; }
btScalar getBaseMass() const { return m_baseMass; }
const btVector3 &getBaseInertia() const { return m_baseInertia; }
btScalar getLinkMass(int i) const;
const btVector3 &getLinkInertia(int i) const;
//
// change mass (incomplete: can only change base mass and inertia at present)
//
void setBaseMass(btScalar mass) { m_baseMass = mass; }
void setBaseInertia(const btVector3 &inertia) { m_baseInertia = inertia; }
//
// get/set pos/vel/rot/omega for the base link
//
const btVector3 &getBasePos() const
{
return m_basePos;
} // in world frame
const btVector3 getBaseVel() const
{
return btVector3(m_realBuf[3], m_realBuf[4], m_realBuf[5]);
} // in world frame
const btQuaternion &getWorldToBaseRot() const
{
return m_baseQuat;
}
const btVector3 &getInterpolateBasePos() const
{
return m_basePos_interpolate;
} // in world frame
const btQuaternion &getInterpolateWorldToBaseRot() const
{
return m_baseQuat_interpolate;
}
// rotates world vectors into base frame
btVector3 getBaseOmega() const { return btVector3(m_realBuf[0], m_realBuf[1], m_realBuf[2]); } // in world frame
void setBasePos(const btVector3 &pos)
{
m_basePos = pos;
if(!isBaseKinematic())
m_basePos_interpolate = pos;
}
void setInterpolateBasePos(const btVector3 &pos)
{
m_basePos_interpolate = pos;
}
void setBaseWorldTransform(const btTransform &tr)
{
setBasePos(tr.getOrigin());
setWorldToBaseRot(tr.getRotation().inverse());
}
btTransform getBaseWorldTransform() const
{
btTransform tr;
tr.setOrigin(getBasePos());
tr.setRotation(getWorldToBaseRot().inverse());
return tr;
}
void setInterpolateBaseWorldTransform(const btTransform &tr)
{
setInterpolateBasePos(tr.getOrigin());
setInterpolateWorldToBaseRot(tr.getRotation().inverse());
}
btTransform getInterpolateBaseWorldTransform() const
{
btTransform tr;
tr.setOrigin(getInterpolateBasePos());
tr.setRotation(getInterpolateWorldToBaseRot().inverse());
return tr;
}
void setBaseVel(const btVector3 &vel)
{
m_realBuf[3] = vel[0];
m_realBuf[4] = vel[1];
m_realBuf[5] = vel[2];
}
void setWorldToBaseRot(const btQuaternion &rot)
{
m_baseQuat = rot; //m_baseQuat asumed to ba alias!?
if(!isBaseKinematic())
m_baseQuat_interpolate = rot;
}
void setInterpolateWorldToBaseRot(const btQuaternion &rot)
{
m_baseQuat_interpolate = rot;
}
void setBaseOmega(const btVector3 &omega)
{
m_realBuf[0] = omega[0];
m_realBuf[1] = omega[1];
m_realBuf[2] = omega[2];
}
void saveKinematicState(btScalar timeStep);
//
// get/set pos/vel for child m_links (i = 0 to num_links-1)
//
btScalar getJointPos(int i) const;
btScalar getJointVel(int i) const;
btScalar *getJointVelMultiDof(int i);
btScalar *getJointPosMultiDof(int i);
const btScalar *getJointVelMultiDof(int i) const;
const btScalar *getJointPosMultiDof(int i) const;
void setJointPos(int i, btScalar q);
void setJointVel(int i, btScalar qdot);
void setJointPosMultiDof(int i, const double *q);
void setJointVelMultiDof(int i, const double *qdot);
void setJointPosMultiDof(int i, const float *q);
void setJointVelMultiDof(int i, const float *qdot);
//
// direct access to velocities as a vector of 6 + num_links elements.
// (omega first, then v, then joint velocities.)
//
const btScalar *getVelocityVector() const
{
return &m_realBuf[0];
}
const btScalar *getDeltaVelocityVector() const
{
return &m_deltaV[0];
}
const btScalar *getSplitVelocityVector() const
{
return &m_splitV[0];
}
/* btScalar * getVelocityVector()
{
return &real_buf[0];
}
*/
//
// get the frames of reference (positions and orientations) of the child m_links
// (i = 0 to num_links-1)
//
const btVector3 &getRVector(int i) const; // vector from COM(parent(i)) to COM(i), in frame i's coords
const btQuaternion &getParentToLocalRot(int i) const; // rotates vectors in frame parent(i) to vectors in frame i.
const btVector3 &getInterpolateRVector(int i) const; // vector from COM(parent(i)) to COM(i), in frame i's coords
const btQuaternion &getInterpolateParentToLocalRot(int i) const; // rotates vectors in frame parent(i) to vectors in frame i.
//
// transform vectors in local frame of link i to world frame (or vice versa)
//
btVector3 localPosToWorld(int i, const btVector3 &local_pos) const;
btVector3 localDirToWorld(int i, const btVector3 &local_dir) const;
btVector3 worldPosToLocal(int i, const btVector3 &world_pos) const;
btVector3 worldDirToLocal(int i, const btVector3 &world_dir) const;
//
// transform a frame in local coordinate to a frame in world coordinate
//
btMatrix3x3 localFrameToWorld(int i, const btMatrix3x3 &local_frame) const;
//
// set external forces and torques. Note all external forces/torques are given in the WORLD frame.
//
void clearForcesAndTorques();
void clearConstraintForces();
void clearVelocities();
void addBaseForce(const btVector3 &f)
{
m_baseForce += f;
}
void addBaseTorque(const btVector3 &t) { m_baseTorque += t; }
void addLinkForce(int i, const btVector3 &f);
void addLinkTorque(int i, const btVector3 &t);
void addBaseConstraintForce(const btVector3 &f)
{
m_baseConstraintForce += f;
}
void addBaseConstraintTorque(const btVector3 &t) { m_baseConstraintTorque += t; }
void addLinkConstraintForce(int i, const btVector3 &f);
void addLinkConstraintTorque(int i, const btVector3 &t);
void addJointTorque(int i, btScalar Q);
void addJointTorqueMultiDof(int i, int dof, btScalar Q);
void addJointTorqueMultiDof(int i, const btScalar *Q);
const btVector3 &getBaseForce() const { return m_baseForce; }
const btVector3 &getBaseTorque() const { return m_baseTorque; }
const btVector3 &getLinkForce(int i) const;
const btVector3 &getLinkTorque(int i) const;
btScalar getJointTorque(int i) const;
btScalar *getJointTorqueMultiDof(int i);
//
// dynamics routines.
//
// timestep the velocities (given the external forces/torques set using addBaseForce etc).
// also sets up caches for calcAccelerationDeltas.
//
// Note: the caller must provide three vectors which are used as
// temporary scratch space. The idea here is to reduce dynamic
// memory allocation: the same scratch vectors can be re-used
// again and again for different Multibodies, instead of each
// btMultiBody allocating (and then deallocating) their own
// individual scratch buffers. This gives a considerable speed
// improvement, at least on Windows (where dynamic memory
// allocation appears to be fairly slow).
//
void computeAccelerationsArticulatedBodyAlgorithmMultiDof(btScalar dt,
btAlignedObjectArray<btScalar> & scratch_r,
btAlignedObjectArray<btVector3> & scratch_v,
btAlignedObjectArray<btMatrix3x3> & scratch_m,
bool isConstraintPass,
bool jointFeedbackInWorldSpace,
bool jointFeedbackInJointFrame
);
///stepVelocitiesMultiDof is deprecated, use computeAccelerationsArticulatedBodyAlgorithmMultiDof instead
//void stepVelocitiesMultiDof(btScalar dt,
// btAlignedObjectArray<btScalar> & scratch_r,
// btAlignedObjectArray<btVector3> & scratch_v,
// btAlignedObjectArray<btMatrix3x3> & scratch_m,
// bool isConstraintPass = false)
//{
// computeAccelerationsArticulatedBodyAlgorithmMultiDof(dt, scratch_r, scratch_v, scratch_m, isConstraintPass, false, false);
//}
// calcAccelerationDeltasMultiDof
// input: force vector (in same format as jacobian, i.e.:
// 3 torque values, 3 force values, num_links joint torque values)
// output: 3 omegadot values, 3 vdot values, num_links q_double_dot values
// (existing contents of output array are replaced)
// calcAccelerationDeltasMultiDof must have been called first.
void calcAccelerationDeltasMultiDof(const btScalar *force, btScalar *output,
btAlignedObjectArray<btScalar> &scratch_r,
btAlignedObjectArray<btVector3> &scratch_v) const;
void applyDeltaVeeMultiDof2(const btScalar *delta_vee, btScalar multiplier)
{
for (int dof = 0; dof < 6 + getNumDofs(); ++dof)
{
m_deltaV[dof] += delta_vee[dof] * multiplier;
}
}
void applyDeltaSplitVeeMultiDof(const btScalar *delta_vee, btScalar multiplier)
{
for (int dof = 0; dof < 6 + getNumDofs(); ++dof)
{
m_splitV[dof] += delta_vee[dof] * multiplier;
}
}
void addSplitV()
{
applyDeltaVeeMultiDof(&m_splitV[0], 1);
}
void substractSplitV()
{
applyDeltaVeeMultiDof(&m_splitV[0], -1);
for (int dof = 0; dof < 6 + getNumDofs(); ++dof)
{
m_splitV[dof] = 0.f;
}
}
void processDeltaVeeMultiDof2()
{
applyDeltaVeeMultiDof(&m_deltaV[0], 1);
for (int dof = 0; dof < 6 + getNumDofs(); ++dof)
{
m_deltaV[dof] = 0.f;
}
}
void applyDeltaVeeMultiDof(const btScalar *delta_vee, btScalar multiplier)
{
//for (int dof = 0; dof < 6 + getNumDofs(); ++dof)
// printf("%.4f ", delta_vee[dof]*multiplier);
//printf("\n");
//btScalar sum = 0;
//for (int dof = 0; dof < 6 + getNumDofs(); ++dof)
//{
// sum += delta_vee[dof]*multiplier*delta_vee[dof]*multiplier;
//}
//btScalar l = btSqrt(sum);
//if (l>m_maxAppliedImpulse)
//{
// multiplier *= m_maxAppliedImpulse/l;
//}
for (int dof = 0; dof < 6 + getNumDofs(); ++dof)
{
m_realBuf[dof] += delta_vee[dof] * multiplier;
btClamp(m_realBuf[dof], -m_maxCoordinateVelocity, m_maxCoordinateVelocity);
}
}
// timestep the positions (given current velocities).
void stepPositionsMultiDof(btScalar dt, btScalar *pq = 0, btScalar *pqd = 0);
// predict the positions
void predictPositionsMultiDof(btScalar dt);
//
// contacts
//
// This routine fills out a contact constraint jacobian for this body.
// the 'normal' supplied must be -n for body1 or +n for body2 of the contact.
// 'normal' & 'contact_point' are both given in world coordinates.
void fillContactJacobianMultiDof(int link,
const btVector3 &contact_point,
const btVector3 &normal,
btScalar *jac,
btAlignedObjectArray<btScalar> &scratch_r,
btAlignedObjectArray<btVector3> &scratch_v,
btAlignedObjectArray<btMatrix3x3> &scratch_m) const { fillConstraintJacobianMultiDof(link, contact_point, btVector3(0, 0, 0), normal, jac, scratch_r, scratch_v, scratch_m); }
//a more general version of fillContactJacobianMultiDof which does not assume..
//.. that the constraint in question is contact or, to be more precise, constrains linear velocity only
void fillConstraintJacobianMultiDof(int link,
const btVector3 &contact_point,
const btVector3 &normal_ang,
const btVector3 &normal_lin,
btScalar *jac,
btAlignedObjectArray<btScalar> &scratch_r,
btAlignedObjectArray<btVector3> &scratch_v,
btAlignedObjectArray<btMatrix3x3> &scratch_m) const;
//
// sleeping
//
void setCanSleep(bool canSleep)
{
if (m_canWakeup)
{
m_canSleep = canSleep;
}
}
bool getCanSleep() const
{
return m_canSleep;
}
bool getCanWakeup() const
{
return m_canWakeup;
}
void setCanWakeup(bool canWakeup)
{
m_canWakeup = canWakeup;
}
bool isAwake() const
{
return m_awake;
}
void wakeUp();
void goToSleep();
void checkMotionAndSleepIfRequired(btScalar timestep);
bool hasFixedBase() const;
bool isBaseKinematic() const;
bool isBaseStaticOrKinematic() const;
// set the dynamic type in the base's collision flags.
void setBaseDynamicType(int dynamicType);
void setFixedBase(bool fixedBase)
{
m_fixedBase = fixedBase;
if(m_fixedBase)
setBaseDynamicType(btCollisionObject::CF_STATIC_OBJECT);
else
setBaseDynamicType(btCollisionObject::CF_DYNAMIC_OBJECT);
}
int getCompanionId() const
{
return m_companionId;
}
void setCompanionId(int id)
{
//printf("for %p setCompanionId(%d)\n",this, id);
m_companionId = id;
}
void setNumLinks(int numLinks) //careful: when changing the number of m_links, make sure to re-initialize or update existing m_links
{
m_links.resize(numLinks);
}
btScalar getLinearDamping() const
{
return m_linearDamping;
}
void setLinearDamping(btScalar damp)
{
m_linearDamping = damp;
}
btScalar getAngularDamping() const
{
return m_angularDamping;
}
void setAngularDamping(btScalar damp)
{
m_angularDamping = damp;
}
bool getUseGyroTerm() const
{
return m_useGyroTerm;
}
void setUseGyroTerm(bool useGyro)
{
m_useGyroTerm = useGyro;
}
btScalar getMaxCoordinateVelocity() const
{
return m_maxCoordinateVelocity;
}
void setMaxCoordinateVelocity(btScalar maxVel)
{
m_maxCoordinateVelocity = maxVel;
}
btScalar getMaxAppliedImpulse() const
{
return m_maxAppliedImpulse;
}
void setMaxAppliedImpulse(btScalar maxImp)
{
m_maxAppliedImpulse = maxImp;
}
void setHasSelfCollision(bool hasSelfCollision)
{
m_hasSelfCollision = hasSelfCollision;
}
bool hasSelfCollision() const
{
return m_hasSelfCollision;
}
void finalizeMultiDof();
void useRK4Integration(bool use) { m_useRK4 = use; }
bool isUsingRK4Integration() const { return m_useRK4; }
void useGlobalVelocities(bool use) { m_useGlobalVelocities = use; }
bool isUsingGlobalVelocities() const { return m_useGlobalVelocities; }
bool isPosUpdated() const
{
return __posUpdated;
}
void setPosUpdated(bool updated)
{
__posUpdated = updated;
}
//internalNeedsJointFeedback is for internal use only
bool internalNeedsJointFeedback() const
{
return m_internalNeedsJointFeedback;
}
void forwardKinematics(btAlignedObjectArray<btQuaternion>& world_to_local, btAlignedObjectArray<btVector3> & local_origin);
void compTreeLinkVelocities(btVector3 * omega, btVector3 * vel) const;
void updateCollisionObjectWorldTransforms(btAlignedObjectArray<btQuaternion> & world_to_local, btAlignedObjectArray<btVector3> & local_origin);
void updateCollisionObjectInterpolationWorldTransforms(btAlignedObjectArray<btQuaternion> & world_to_local, btAlignedObjectArray<btVector3> & local_origin);
virtual int calculateSerializeBufferSize() const;
///fills the dataBuffer and returns the struct name (and 0 on failure)
virtual const char *serialize(void *dataBuffer, class btSerializer *serializer) const;
const char *getBaseName() const
{
return m_baseName;
}
///memory of setBaseName needs to be manager by user
void setBaseName(const char *name)
{
m_baseName = name;
}
///users can point to their objects, userPointer is not used by Bullet
void *getUserPointer() const
{
return m_userObjectPointer;
}
int getUserIndex() const
{
return m_userIndex;
}
int getUserIndex2() const
{
return m_userIndex2;
}
///users can point to their objects, userPointer is not used by Bullet
void setUserPointer(void *userPointer)
{
m_userObjectPointer = userPointer;
}
///users can point to their objects, userPointer is not used by Bullet
void setUserIndex(int index)
{
m_userIndex = index;
}
void setUserIndex2(int index)
{
m_userIndex2 = index;
}
static void spatialTransform(const btMatrix3x3 &rotation_matrix, // rotates vectors in 'from' frame to vectors in 'to' frame
const btVector3 &displacement, // vector from origin of 'from' frame to origin of 'to' frame, in 'to' coordinates
const btVector3 &top_in, // top part of input vector
const btVector3 &bottom_in, // bottom part of input vector
btVector3 &top_out, // top part of output vector
btVector3 &bottom_out); // bottom part of output vector
void setLinkDynamicType(const int i, int type);
bool isLinkStaticOrKinematic(const int i) const;
bool isLinkKinematic(const int i) const;
bool isLinkAndAllAncestorsStaticOrKinematic(const int i) const;
bool isLinkAndAllAncestorsKinematic(const int i) const;
void setSleepThreshold(btScalar sleepThreshold)
{
m_sleepEpsilon = sleepThreshold;
}
void setSleepTimeout(btScalar sleepTimeout)
{
this->m_sleepTimeout = sleepTimeout;
}
private:
btMultiBody(const btMultiBody &); // not implemented
void operator=(const btMultiBody &); // not implemented
void solveImatrix(const btVector3 &rhs_top, const btVector3 &rhs_bot, btScalar result[6]) const;
void solveImatrix(const btSpatialForceVector &rhs, btSpatialMotionVector &result) const;
void updateLinksDofOffsets()
{
int dofOffset = 0, cfgOffset = 0;
for (int bidx = 0; bidx < m_links.size(); ++bidx)
{
m_links[bidx].m_dofOffset = dofOffset;
m_links[bidx].m_cfgOffset = cfgOffset;
dofOffset += m_links[bidx].m_dofCount;
cfgOffset += m_links[bidx].m_posVarCount;
}
}
void mulMatrix(const btScalar *pA, const btScalar *pB, int rowsA, int colsA, int rowsB, int colsB, btScalar *pC) const;
private:
btMultiBodyLinkCollider *m_baseCollider; //can be NULL
const char *m_baseName; //memory needs to be manager by user!
btVector3 m_basePos; // position of COM of base (world frame)
btVector3 m_basePos_interpolate; // position of interpolated COM of base (world frame)
btQuaternion m_baseQuat; // rotates world points into base frame
btQuaternion m_baseQuat_interpolate;
btScalar m_baseMass; // mass of the base
btVector3 m_baseInertia; // inertia of the base (in local frame; diagonal)
btVector3 m_baseForce; // external force applied to base. World frame.
btVector3 m_baseTorque; // external torque applied to base. World frame.
btVector3 m_baseConstraintForce; // external force applied to base. World frame.
btVector3 m_baseConstraintTorque; // external torque applied to base. World frame.
btAlignedObjectArray<btMultibodyLink> m_links; // array of m_links, excluding the base. index from 0 to num_links-1.
//
// realBuf:
// offset size array
// 0 6 + num_links v (base_omega; base_vel; joint_vels) MULTIDOF [sysdof x sysdof for D matrices (TOO MUCH!) + pos_delta which is sys-cfg sized]
// 6+num_links num_links D
//
// vectorBuf:
// offset size array
// 0 num_links h_top
// num_links num_links h_bottom
//
// matrixBuf:
// offset size array
// 0 num_links+1 rot_from_parent
//
btAlignedObjectArray<btScalar> m_splitV;
btAlignedObjectArray<btScalar> m_deltaV;
btAlignedObjectArray<btScalar> m_realBuf;
btAlignedObjectArray<btVector3> m_vectorBuf;
btAlignedObjectArray<btMatrix3x3> m_matrixBuf;
btMatrix3x3 m_cachedInertiaTopLeft;
btMatrix3x3 m_cachedInertiaTopRight;
btMatrix3x3 m_cachedInertiaLowerLeft;
btMatrix3x3 m_cachedInertiaLowerRight;
bool m_cachedInertiaValid;
bool m_fixedBase;
// Sleep parameters.
bool m_awake;
bool m_canSleep;
bool m_canWakeup;
btScalar m_sleepTimer;
btScalar m_sleepEpsilon;
btScalar m_sleepTimeout;
void *m_userObjectPointer;
int m_userIndex2;
int m_userIndex;
int m_companionId;
btScalar m_linearDamping;
btScalar m_angularDamping;
bool m_useGyroTerm;
btScalar m_maxAppliedImpulse;
btScalar m_maxCoordinateVelocity;
bool m_hasSelfCollision;
bool __posUpdated;
int m_dofCount, m_posVarCnt;
bool m_useRK4, m_useGlobalVelocities;
//for global velocities, see 8.3.2B Proposed resolution in Jakub Stepien PhD Thesis
//https://drive.google.com/file/d/0Bz3vEa19XOYGNWdZWGpMdUdqVmZ5ZVBOaEh4ZnpNaUxxZFNV/view?usp=sharing
///the m_needsJointFeedback gets updated/computed during the stepVelocitiesMultiDof and it for internal usage only
bool m_internalNeedsJointFeedback;
//If enabled, calculate the velocity based on kinematic transform changes. Currently only implemented for the base.
bool m_kinematic_calculate_velocity;
};
struct btMultiBodyLinkDoubleData
{
btQuaternionDoubleData m_zeroRotParentToThis;
btVector3DoubleData m_parentComToThisPivotOffset;
btVector3DoubleData m_thisPivotToThisComOffset;
btVector3DoubleData m_jointAxisTop[6];
btVector3DoubleData m_jointAxisBottom[6];
btVector3DoubleData m_linkInertia; // inertia of the base (in local frame; diagonal)
btVector3DoubleData m_absFrameTotVelocityTop;
btVector3DoubleData m_absFrameTotVelocityBottom;
btVector3DoubleData m_absFrameLocVelocityTop;
btVector3DoubleData m_absFrameLocVelocityBottom;
double m_linkMass;
int m_parentIndex;
int m_jointType;
int m_dofCount;
int m_posVarCount;
double m_jointPos[7];
double m_jointVel[6];
double m_jointTorque[6];
double m_jointDamping;
double m_jointFriction;
double m_jointLowerLimit;
double m_jointUpperLimit;
double m_jointMaxForce;
double m_jointMaxVelocity;
char *m_linkName;
char *m_jointName;
btCollisionObjectDoubleData *m_linkCollider;
char *m_paddingPtr;
};
struct btMultiBodyLinkFloatData
{
btQuaternionFloatData m_zeroRotParentToThis;
btVector3FloatData m_parentComToThisPivotOffset;
btVector3FloatData m_thisPivotToThisComOffset;
btVector3FloatData m_jointAxisTop[6];
btVector3FloatData m_jointAxisBottom[6];
btVector3FloatData m_linkInertia; // inertia of the base (in local frame; diagonal)
btVector3FloatData m_absFrameTotVelocityTop;
btVector3FloatData m_absFrameTotVelocityBottom;
btVector3FloatData m_absFrameLocVelocityTop;
btVector3FloatData m_absFrameLocVelocityBottom;
int m_dofCount;
float m_linkMass;
int m_parentIndex;
int m_jointType;
float m_jointPos[7];
float m_jointVel[6];
float m_jointTorque[6];
int m_posVarCount;
float m_jointDamping;
float m_jointFriction;
float m_jointLowerLimit;
float m_jointUpperLimit;
float m_jointMaxForce;
float m_jointMaxVelocity;
char *m_linkName;
char *m_jointName;
btCollisionObjectFloatData *m_linkCollider;
char *m_paddingPtr;
};
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
struct btMultiBodyDoubleData
{
btVector3DoubleData m_baseWorldPosition;
btQuaternionDoubleData m_baseWorldOrientation;
btVector3DoubleData m_baseLinearVelocity;
btVector3DoubleData m_baseAngularVelocity;
btVector3DoubleData m_baseInertia; // inertia of the base (in local frame; diagonal)
double m_baseMass;
int m_numLinks;
char m_padding[4];
char *m_baseName;
btMultiBodyLinkDoubleData *m_links;
btCollisionObjectDoubleData *m_baseCollider;
};
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
struct btMultiBodyFloatData
{
btVector3FloatData m_baseWorldPosition;
btQuaternionFloatData m_baseWorldOrientation;
btVector3FloatData m_baseLinearVelocity;
btVector3FloatData m_baseAngularVelocity;
btVector3FloatData m_baseInertia; // inertia of the base (in local frame; diagonal)
float m_baseMass;
int m_numLinks;
char *m_baseName;
btMultiBodyLinkFloatData *m_links;
btCollisionObjectFloatData *m_baseCollider;
};
#endif
|