1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
|
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "LinearMath/btScalar.h"
#include "LinearMath/btThreads.h"
#include "btSimulationIslandManagerMt.h"
#include "BulletCollision/BroadphaseCollision/btDispatcher.h"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionDispatch/btCollisionWorld.h"
#include "BulletDynamics/ConstraintSolver/btTypedConstraint.h"
#include "BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolverMt.h" // for s_minimumContactManifoldsForBatching
//#include <stdio.h>
#include "LinearMath/btQuickprof.h"
SIMD_FORCE_INLINE int calcBatchCost(int bodies, int manifolds, int constraints)
{
// rough estimate of the cost of a batch, used for merging
int batchCost = bodies + 8 * manifolds + 4 * constraints;
return batchCost;
}
SIMD_FORCE_INLINE int calcBatchCost(const btSimulationIslandManagerMt::Island* island)
{
return calcBatchCost(island->bodyArray.size(), island->manifoldArray.size(), island->constraintArray.size());
}
btSimulationIslandManagerMt::btSimulationIslandManagerMt()
{
m_minimumSolverBatchSize = calcBatchCost(0, 128, 0);
m_batchIslandMinBodyCount = 32;
m_islandDispatch = parallelIslandDispatch;
m_batchIsland = NULL;
}
btSimulationIslandManagerMt::~btSimulationIslandManagerMt()
{
for (int i = 0; i < m_allocatedIslands.size(); ++i)
{
delete m_allocatedIslands[i];
}
m_allocatedIslands.resize(0);
m_activeIslands.resize(0);
m_freeIslands.resize(0);
}
inline int getIslandId(const btPersistentManifold* lhs)
{
const btCollisionObject* rcolObj0 = static_cast<const btCollisionObject*>(lhs->getBody0());
const btCollisionObject* rcolObj1 = static_cast<const btCollisionObject*>(lhs->getBody1());
int islandId = rcolObj0->getIslandTag() >= 0 ? rcolObj0->getIslandTag() : rcolObj1->getIslandTag();
return islandId;
}
SIMD_FORCE_INLINE int btGetConstraintIslandId1(const btTypedConstraint* lhs)
{
const btCollisionObject& rcolObj0 = lhs->getRigidBodyA();
const btCollisionObject& rcolObj1 = lhs->getRigidBodyB();
int islandId = rcolObj0.getIslandTag() >= 0 ? rcolObj0.getIslandTag() : rcolObj1.getIslandTag();
return islandId;
}
/// function object that routes calls to operator<
class IslandBatchSizeSortPredicate
{
public:
bool operator()(const btSimulationIslandManagerMt::Island* lhs, const btSimulationIslandManagerMt::Island* rhs) const
{
int lCost = calcBatchCost(lhs);
int rCost = calcBatchCost(rhs);
return lCost > rCost;
}
};
class IslandBodyCapacitySortPredicate
{
public:
bool operator()(const btSimulationIslandManagerMt::Island* lhs, const btSimulationIslandManagerMt::Island* rhs) const
{
return lhs->bodyArray.capacity() > rhs->bodyArray.capacity();
}
};
void btSimulationIslandManagerMt::Island::append(const Island& other)
{
// append bodies
for (int i = 0; i < other.bodyArray.size(); ++i)
{
bodyArray.push_back(other.bodyArray[i]);
}
// append manifolds
for (int i = 0; i < other.manifoldArray.size(); ++i)
{
manifoldArray.push_back(other.manifoldArray[i]);
}
// append constraints
for (int i = 0; i < other.constraintArray.size(); ++i)
{
constraintArray.push_back(other.constraintArray[i]);
}
}
bool btIsBodyInIsland(const btSimulationIslandManagerMt::Island& island, const btCollisionObject* obj)
{
for (int i = 0; i < island.bodyArray.size(); ++i)
{
if (island.bodyArray[i] == obj)
{
return true;
}
}
return false;
}
void btSimulationIslandManagerMt::initIslandPools()
{
// reset island pools
int numElem = getUnionFind().getNumElements();
m_lookupIslandFromId.resize(numElem);
for (int i = 0; i < m_lookupIslandFromId.size(); ++i)
{
m_lookupIslandFromId[i] = NULL;
}
m_activeIslands.resize(0);
m_freeIslands.resize(0);
// check whether allocated islands are sorted by body capacity (largest to smallest)
int lastCapacity = 0;
bool isSorted = true;
for (int i = 0; i < m_allocatedIslands.size(); ++i)
{
Island* island = m_allocatedIslands[i];
int cap = island->bodyArray.capacity();
if (cap > lastCapacity)
{
isSorted = false;
break;
}
lastCapacity = cap;
}
if (!isSorted)
{
m_allocatedIslands.quickSort(IslandBodyCapacitySortPredicate());
}
m_batchIsland = NULL;
// mark all islands free (but avoid deallocation)
for (int i = 0; i < m_allocatedIslands.size(); ++i)
{
Island* island = m_allocatedIslands[i];
island->bodyArray.resize(0);
island->manifoldArray.resize(0);
island->constraintArray.resize(0);
island->id = -1;
island->isSleeping = true;
m_freeIslands.push_back(island);
}
}
btSimulationIslandManagerMt::Island* btSimulationIslandManagerMt::getIsland(int id)
{
btAssert(id >= 0);
btAssert(id < m_lookupIslandFromId.size());
Island* island = m_lookupIslandFromId[id];
if (island == NULL)
{
// search for existing island
for (int i = 0; i < m_activeIslands.size(); ++i)
{
if (m_activeIslands[i]->id == id)
{
island = m_activeIslands[i];
break;
}
}
m_lookupIslandFromId[id] = island;
}
return island;
}
btSimulationIslandManagerMt::Island* btSimulationIslandManagerMt::allocateIsland(int id, int numBodies)
{
Island* island = NULL;
int allocSize = numBodies;
if (numBodies < m_batchIslandMinBodyCount)
{
if (m_batchIsland)
{
island = m_batchIsland;
m_lookupIslandFromId[id] = island;
// if we've made a large enough batch,
if (island->bodyArray.size() + numBodies >= m_batchIslandMinBodyCount)
{
// next time start a new batch
m_batchIsland = NULL;
}
return island;
}
else
{
// need to allocate a batch island
allocSize = m_batchIslandMinBodyCount * 2;
}
}
btAlignedObjectArray<Island*>& freeIslands = m_freeIslands;
// search for free island
if (freeIslands.size() > 0)
{
// try to reuse a previously allocated island
int iFound = freeIslands.size();
// linear search for smallest island that can hold our bodies
for (int i = freeIslands.size() - 1; i >= 0; --i)
{
if (freeIslands[i]->bodyArray.capacity() >= allocSize)
{
iFound = i;
island = freeIslands[i];
island->id = id;
break;
}
}
// if found, shrink array while maintaining ordering
if (island)
{
int iDest = iFound;
int iSrc = iDest + 1;
while (iSrc < freeIslands.size())
{
freeIslands[iDest++] = freeIslands[iSrc++];
}
freeIslands.pop_back();
}
}
if (island == NULL)
{
// no free island found, allocate
island = new Island(); // TODO: change this to use the pool allocator
island->id = id;
island->bodyArray.reserve(allocSize);
m_allocatedIslands.push_back(island);
}
m_lookupIslandFromId[id] = island;
if (numBodies < m_batchIslandMinBodyCount)
{
m_batchIsland = island;
}
m_activeIslands.push_back(island);
return island;
}
void btSimulationIslandManagerMt::buildIslands(btDispatcher* dispatcher, btCollisionWorld* collisionWorld)
{
BT_PROFILE("buildIslands");
btCollisionObjectArray& collisionObjects = collisionWorld->getCollisionObjectArray();
//we are going to sort the unionfind array, and store the element id in the size
//afterwards, we clean unionfind, to make sure no-one uses it anymore
getUnionFind().sortIslands();
int numElem = getUnionFind().getNumElements();
int endIslandIndex = 1;
int startIslandIndex;
//update the sleeping state for bodies, if all are sleeping
for (startIslandIndex = 0; startIslandIndex < numElem; startIslandIndex = endIslandIndex)
{
int islandId = getUnionFind().getElement(startIslandIndex).m_id;
for (endIslandIndex = startIslandIndex + 1; (endIslandIndex < numElem) && (getUnionFind().getElement(endIslandIndex).m_id == islandId); endIslandIndex++)
{
}
//int numSleeping = 0;
bool allSleeping = true;
int idx;
for (idx = startIslandIndex; idx < endIslandIndex; idx++)
{
int i = getUnionFind().getElement(idx).m_sz;
btCollisionObject* colObj0 = collisionObjects[i];
if ((colObj0->getIslandTag() != islandId) && (colObj0->getIslandTag() != -1))
{
// printf("error in island management\n");
}
btAssert((colObj0->getIslandTag() == islandId) || (colObj0->getIslandTag() == -1));
if (colObj0->getIslandTag() == islandId)
{
if (colObj0->getActivationState() == ACTIVE_TAG ||
colObj0->getActivationState() == DISABLE_DEACTIVATION)
{
allSleeping = false;
break;
}
}
}
if (allSleeping)
{
int idx;
for (idx = startIslandIndex; idx < endIslandIndex; idx++)
{
int i = getUnionFind().getElement(idx).m_sz;
btCollisionObject* colObj0 = collisionObjects[i];
if ((colObj0->getIslandTag() != islandId) && (colObj0->getIslandTag() != -1))
{
// printf("error in island management\n");
}
btAssert((colObj0->getIslandTag() == islandId) || (colObj0->getIslandTag() == -1));
if (colObj0->getIslandTag() == islandId)
{
colObj0->setActivationState(ISLAND_SLEEPING);
}
}
}
else
{
int idx;
for (idx = startIslandIndex; idx < endIslandIndex; idx++)
{
int i = getUnionFind().getElement(idx).m_sz;
btCollisionObject* colObj0 = collisionObjects[i];
if ((colObj0->getIslandTag() != islandId) && (colObj0->getIslandTag() != -1))
{
// printf("error in island management\n");
}
btAssert((colObj0->getIslandTag() == islandId) || (colObj0->getIslandTag() == -1));
if (colObj0->getIslandTag() == islandId)
{
if (colObj0->getActivationState() == ISLAND_SLEEPING)
{
colObj0->setActivationState(WANTS_DEACTIVATION);
colObj0->setDeactivationTime(0.f);
}
}
}
}
}
}
void btSimulationIslandManagerMt::addBodiesToIslands(btCollisionWorld* collisionWorld)
{
btCollisionObjectArray& collisionObjects = collisionWorld->getCollisionObjectArray();
int endIslandIndex = 1;
int startIslandIndex;
int numElem = getUnionFind().getNumElements();
// create explicit islands and add bodies to each
for (startIslandIndex = 0; startIslandIndex < numElem; startIslandIndex = endIslandIndex)
{
int islandId = getUnionFind().getElement(startIslandIndex).m_id;
// find end index
for (endIslandIndex = startIslandIndex; (endIslandIndex < numElem) && (getUnionFind().getElement(endIslandIndex).m_id == islandId); endIslandIndex++)
{
}
// check if island is sleeping
bool islandSleeping = true;
for (int iElem = startIslandIndex; iElem < endIslandIndex; iElem++)
{
int i = getUnionFind().getElement(iElem).m_sz;
btCollisionObject* colObj = collisionObjects[i];
if (colObj->isActive())
{
islandSleeping = false;
}
}
if (!islandSleeping)
{
// want to count the number of bodies before allocating the island to optimize memory usage of the Island structures
int numBodies = endIslandIndex - startIslandIndex;
Island* island = allocateIsland(islandId, numBodies);
island->isSleeping = false;
// add bodies to island
for (int iElem = startIslandIndex; iElem < endIslandIndex; iElem++)
{
int i = getUnionFind().getElement(iElem).m_sz;
btCollisionObject* colObj = collisionObjects[i];
island->bodyArray.push_back(colObj);
}
}
}
}
void btSimulationIslandManagerMt::addManifoldsToIslands(btDispatcher* dispatcher)
{
// walk all the manifolds, activating bodies touched by kinematic objects, and add each manifold to its Island
int maxNumManifolds = dispatcher->getNumManifolds();
for (int i = 0; i < maxNumManifolds; i++)
{
btPersistentManifold* manifold = dispatcher->getManifoldByIndexInternal(i);
const btCollisionObject* colObj0 = static_cast<const btCollisionObject*>(manifold->getBody0());
const btCollisionObject* colObj1 = static_cast<const btCollisionObject*>(manifold->getBody1());
///@todo: check sleeping conditions!
if (((colObj0) && colObj0->getActivationState() != ISLAND_SLEEPING) ||
((colObj1) && colObj1->getActivationState() != ISLAND_SLEEPING))
{
//kinematic objects don't merge islands, but wake up all connected objects
if (colObj0->isKinematicObject() && colObj0->getActivationState() != ISLAND_SLEEPING)
{
if (colObj0->hasContactResponse())
colObj1->activate();
}
if (colObj1->isKinematicObject() && colObj1->getActivationState() != ISLAND_SLEEPING)
{
if (colObj1->hasContactResponse())
colObj0->activate();
}
//filtering for response
if (dispatcher->needsResponse(colObj0, colObj1))
{
// scatter manifolds into various islands
int islandId = getIslandId(manifold);
// if island not sleeping,
if (Island* island = getIsland(islandId))
{
island->manifoldArray.push_back(manifold);
}
}
}
}
}
void btSimulationIslandManagerMt::addConstraintsToIslands(btAlignedObjectArray<btTypedConstraint*>& constraints)
{
// walk constraints
for (int i = 0; i < constraints.size(); i++)
{
// scatter constraints into various islands
btTypedConstraint* constraint = constraints[i];
if (constraint->isEnabled())
{
int islandId = btGetConstraintIslandId1(constraint);
// if island is not sleeping,
if (Island* island = getIsland(islandId))
{
island->constraintArray.push_back(constraint);
}
}
}
}
void btSimulationIslandManagerMt::mergeIslands()
{
// sort islands in order of decreasing batch size
m_activeIslands.quickSort(IslandBatchSizeSortPredicate());
// merge small islands to satisfy minimum batch size
// find first small batch island
int destIslandIndex = m_activeIslands.size();
for (int i = 0; i < m_activeIslands.size(); ++i)
{
Island* island = m_activeIslands[i];
int batchSize = calcBatchCost(island);
if (batchSize < m_minimumSolverBatchSize)
{
destIslandIndex = i;
break;
}
}
int lastIndex = m_activeIslands.size() - 1;
while (destIslandIndex < lastIndex)
{
// merge islands from the back of the list
Island* island = m_activeIslands[destIslandIndex];
int numBodies = island->bodyArray.size();
int numManifolds = island->manifoldArray.size();
int numConstraints = island->constraintArray.size();
int firstIndex = lastIndex;
// figure out how many islands we want to merge and find out how many bodies, manifolds and constraints we will have
while (true)
{
Island* src = m_activeIslands[firstIndex];
numBodies += src->bodyArray.size();
numManifolds += src->manifoldArray.size();
numConstraints += src->constraintArray.size();
int batchCost = calcBatchCost(numBodies, numManifolds, numConstraints);
if (batchCost >= m_minimumSolverBatchSize)
{
break;
}
if (firstIndex - 1 == destIslandIndex)
{
break;
}
firstIndex--;
}
// reserve space for these pointers to minimize reallocation
island->bodyArray.reserve(numBodies);
island->manifoldArray.reserve(numManifolds);
island->constraintArray.reserve(numConstraints);
// merge islands
for (int i = firstIndex; i <= lastIndex; ++i)
{
island->append(*m_activeIslands[i]);
}
// shrink array to exclude the islands that were merged from
m_activeIslands.resize(firstIndex);
lastIndex = firstIndex - 1;
destIslandIndex++;
}
}
void btSimulationIslandManagerMt::solveIsland(btConstraintSolver* solver, Island& island, const SolverParams& solverParams)
{
btPersistentManifold** manifolds = island.manifoldArray.size() ? &island.manifoldArray[0] : NULL;
btTypedConstraint** constraintsPtr = island.constraintArray.size() ? &island.constraintArray[0] : NULL;
solver->solveGroup(&island.bodyArray[0],
island.bodyArray.size(),
manifolds,
island.manifoldArray.size(),
constraintsPtr,
island.constraintArray.size(),
*solverParams.m_solverInfo,
solverParams.m_debugDrawer,
solverParams.m_dispatcher);
}
void btSimulationIslandManagerMt::serialIslandDispatch(btAlignedObjectArray<Island*>* islandsPtr, const SolverParams& solverParams)
{
BT_PROFILE("serialIslandDispatch");
// serial dispatch
btAlignedObjectArray<Island*>& islands = *islandsPtr;
btConstraintSolver* solver = solverParams.m_solverMt ? solverParams.m_solverMt : solverParams.m_solverPool;
for (int i = 0; i < islands.size(); ++i)
{
solveIsland(solver, *islands[i], solverParams);
}
}
struct UpdateIslandDispatcher : public btIParallelForBody
{
btAlignedObjectArray<btSimulationIslandManagerMt::Island*>& m_islandsPtr;
const btSimulationIslandManagerMt::SolverParams& m_solverParams;
UpdateIslandDispatcher(btAlignedObjectArray<btSimulationIslandManagerMt::Island*>& islandsPtr, const btSimulationIslandManagerMt::SolverParams& solverParams)
: m_islandsPtr(islandsPtr), m_solverParams(solverParams)
{
}
void forLoop(int iBegin, int iEnd) const BT_OVERRIDE
{
btConstraintSolver* solver = m_solverParams.m_solverPool;
for (int i = iBegin; i < iEnd; ++i)
{
btSimulationIslandManagerMt::Island* island = m_islandsPtr[i];
btSimulationIslandManagerMt::solveIsland(solver, *island, m_solverParams);
}
}
};
void btSimulationIslandManagerMt::parallelIslandDispatch(btAlignedObjectArray<Island*>* islandsPtr, const SolverParams& solverParams)
{
BT_PROFILE("parallelIslandDispatch");
//
// if there are islands with many contacts, it may be faster to submit these
// large islands *serially* to a single parallel constraint solver, and then later
// submit the remaining smaller islands in parallel to multiple sequential solvers.
//
// Some task schedulers do not deal well with nested parallelFor loops. One implementation
// of OpenMP was actually slower than doing everything single-threaded. Intel TBB
// on the other hand, seems to do a pretty respectable job with it.
//
// When solving islands in parallel, the worst case performance happens when there
// is one very large island and then perhaps a smattering of very small
// islands -- one worker thread takes the large island and the remaining workers
// tear through the smaller islands and then sit idle waiting for the first worker
// to finish. Solving islands in parallel works best when there are numerous small
// islands, roughly equal in size.
//
// By contrast, the other approach -- the parallel constraint solver -- is only
// able to deliver a worthwhile speedup when the island is large. For smaller islands,
// it is difficult to extract a useful amount of parallelism -- the overhead of grouping
// the constraints into batches and sending the batches to worker threads can nullify
// any gains from parallelism.
//
UpdateIslandDispatcher dispatcher(*islandsPtr, solverParams);
// We take advantage of the fact the islands are sorted in order of decreasing size
int iBegin = 0;
if (solverParams.m_solverMt)
{
while (iBegin < islandsPtr->size())
{
btSimulationIslandManagerMt::Island* island = (*islandsPtr)[iBegin];
if (island->manifoldArray.size() < btSequentialImpulseConstraintSolverMt::s_minimumContactManifoldsForBatching)
{
// OK to submit the rest of the array in parallel
break;
}
// serial dispatch to parallel solver for large islands (if any)
solveIsland(solverParams.m_solverMt, *island, solverParams);
++iBegin;
}
}
// parallel dispatch to sequential solvers for rest
btParallelFor(iBegin, islandsPtr->size(), 1, dispatcher);
}
///@todo: this is random access, it can be walked 'cache friendly'!
void btSimulationIslandManagerMt::buildAndProcessIslands(btDispatcher* dispatcher,
btCollisionWorld* collisionWorld,
btAlignedObjectArray<btTypedConstraint*>& constraints,
const SolverParams& solverParams)
{
BT_PROFILE("buildAndProcessIslands");
btCollisionObjectArray& collisionObjects = collisionWorld->getCollisionObjectArray();
buildIslands(dispatcher, collisionWorld);
if (!getSplitIslands())
{
btPersistentManifold** manifolds = dispatcher->getInternalManifoldPointer();
int maxNumManifolds = dispatcher->getNumManifolds();
for (int i = 0; i < maxNumManifolds; i++)
{
btPersistentManifold* manifold = manifolds[i];
const btCollisionObject* colObj0 = static_cast<const btCollisionObject*>(manifold->getBody0());
const btCollisionObject* colObj1 = static_cast<const btCollisionObject*>(manifold->getBody1());
///@todo: check sleeping conditions!
if (((colObj0) && colObj0->getActivationState() != ISLAND_SLEEPING) ||
((colObj1) && colObj1->getActivationState() != ISLAND_SLEEPING))
{
//kinematic objects don't merge islands, but wake up all connected objects
if (colObj0->isKinematicObject() && colObj0->getActivationState() != ISLAND_SLEEPING)
{
if (colObj0->hasContactResponse())
colObj1->activate();
}
if (colObj1->isKinematicObject() && colObj1->getActivationState() != ISLAND_SLEEPING)
{
if (colObj1->hasContactResponse())
colObj0->activate();
}
}
}
btTypedConstraint** constraintsPtr = constraints.size() ? &constraints[0] : NULL;
btConstraintSolver* solver = solverParams.m_solverMt ? solverParams.m_solverMt : solverParams.m_solverPool;
solver->solveGroup(&collisionObjects[0],
collisionObjects.size(),
manifolds,
maxNumManifolds,
constraintsPtr,
constraints.size(),
*solverParams.m_solverInfo,
solverParams.m_debugDrawer,
solverParams.m_dispatcher);
}
else
{
initIslandPools();
//traverse the simulation islands, and call the solver, unless all objects are sleeping/deactivated
addBodiesToIslands(collisionWorld);
addManifoldsToIslands(dispatcher);
addConstraintsToIslands(constraints);
// m_activeIslands array should now contain all non-sleeping Islands, and each Island should
// have all the necessary bodies, manifolds and constraints.
// if we want to merge islands with small batch counts,
if (m_minimumSolverBatchSize > 1)
{
mergeIslands();
}
// dispatch islands to solver
m_islandDispatch(&m_activeIslands, solverParams);
}
}
|