summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletDynamics/Dynamics/btRigidBody.cpp
blob: ca0714fcfa860257f4ce377170300a2dfd9fae79 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#include "btRigidBody.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "LinearMath/btMinMax.h"
#include "LinearMath/btTransformUtil.h"
#include "LinearMath/btMotionState.h"
#include "BulletDynamics/ConstraintSolver/btTypedConstraint.h"
#include "LinearMath/btSerializer.h"

//'temporarily' global variables
btScalar	gDeactivationTime = btScalar(2.);
bool	gDisableDeactivation = false;
static int uniqueId = 0;


btRigidBody::btRigidBody(const btRigidBody::btRigidBodyConstructionInfo& constructionInfo)
{
	setupRigidBody(constructionInfo);
}

btRigidBody::btRigidBody(btScalar mass, btMotionState *motionState, btCollisionShape *collisionShape, const btVector3 &localInertia)
{
	btRigidBodyConstructionInfo cinfo(mass,motionState,collisionShape,localInertia);
	setupRigidBody(cinfo);
}

void	btRigidBody::setupRigidBody(const btRigidBody::btRigidBodyConstructionInfo& constructionInfo)
{

	m_internalType=CO_RIGID_BODY;

	m_linearVelocity.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
	m_angularVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
	m_angularFactor.setValue(1,1,1);
	m_linearFactor.setValue(1,1,1);
	m_gravity.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
	m_gravity_acceleration.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
	m_totalForce.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
	m_totalTorque.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)),
    setDamping(constructionInfo.m_linearDamping, constructionInfo.m_angularDamping);

	m_linearSleepingThreshold = constructionInfo.m_linearSleepingThreshold;
	m_angularSleepingThreshold = constructionInfo.m_angularSleepingThreshold;
	m_optionalMotionState = constructionInfo.m_motionState;
	m_contactSolverType = 0;
	m_frictionSolverType = 0;
	m_additionalDamping = constructionInfo.m_additionalDamping;
	m_additionalDampingFactor = constructionInfo.m_additionalDampingFactor;
	m_additionalLinearDampingThresholdSqr = constructionInfo.m_additionalLinearDampingThresholdSqr;
	m_additionalAngularDampingThresholdSqr = constructionInfo.m_additionalAngularDampingThresholdSqr;
	m_additionalAngularDampingFactor = constructionInfo.m_additionalAngularDampingFactor;

	if (m_optionalMotionState)
	{
		m_optionalMotionState->getWorldTransform(m_worldTransform);
	} else
	{
		m_worldTransform = constructionInfo.m_startWorldTransform;
	}

	m_interpolationWorldTransform = m_worldTransform;
	m_interpolationLinearVelocity.setValue(0,0,0);
	m_interpolationAngularVelocity.setValue(0,0,0);
	
	//moved to btCollisionObject
	m_friction = constructionInfo.m_friction;
	m_rollingFriction = constructionInfo.m_rollingFriction;
    m_spinningFriction = constructionInfo.m_spinningFriction;
    
	m_restitution = constructionInfo.m_restitution;

	setCollisionShape( constructionInfo.m_collisionShape );
	m_debugBodyId = uniqueId++;
	
	setMassProps(constructionInfo.m_mass, constructionInfo.m_localInertia);
	updateInertiaTensor();

	m_rigidbodyFlags = BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY;


	m_deltaLinearVelocity.setZero();
	m_deltaAngularVelocity.setZero();
	m_invMass = m_inverseMass*m_linearFactor;
	m_pushVelocity.setZero();
	m_turnVelocity.setZero();

	

}


void btRigidBody::predictIntegratedTransform(btScalar timeStep,btTransform& predictedTransform) 
{
	btTransformUtil::integrateTransform(m_worldTransform,m_linearVelocity,m_angularVelocity,timeStep,predictedTransform);
}

void			btRigidBody::saveKinematicState(btScalar timeStep)
{
	//todo: clamp to some (user definable) safe minimum timestep, to limit maximum angular/linear velocities
	if (timeStep != btScalar(0.))
	{
		//if we use motionstate to synchronize world transforms, get the new kinematic/animated world transform
		if (getMotionState())
			getMotionState()->getWorldTransform(m_worldTransform);
		btVector3 linVel,angVel;
		
		btTransformUtil::calculateVelocity(m_interpolationWorldTransform,m_worldTransform,timeStep,m_linearVelocity,m_angularVelocity);
		m_interpolationLinearVelocity = m_linearVelocity;
		m_interpolationAngularVelocity = m_angularVelocity;
		m_interpolationWorldTransform = m_worldTransform;
		//printf("angular = %f %f %f\n",m_angularVelocity.getX(),m_angularVelocity.getY(),m_angularVelocity.getZ());
	}
}
	
void	btRigidBody::getAabb(btVector3& aabbMin,btVector3& aabbMax) const
{
	getCollisionShape()->getAabb(m_worldTransform,aabbMin,aabbMax);
}




void btRigidBody::setGravity(const btVector3& acceleration) 
{
	if (m_inverseMass != btScalar(0.0))
	{
		m_gravity = acceleration * (btScalar(1.0) / m_inverseMass);
	}
	m_gravity_acceleration = acceleration;
}






void btRigidBody::setDamping(btScalar lin_damping, btScalar ang_damping)
{
	m_linearDamping = btClamped(lin_damping, (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
	m_angularDamping = btClamped(ang_damping, (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
}




///applyDamping damps the velocity, using the given m_linearDamping and m_angularDamping
void			btRigidBody::applyDamping(btScalar timeStep)
{
	//On new damping: see discussion/issue report here: http://code.google.com/p/bullet/issues/detail?id=74
	//todo: do some performance comparisons (but other parts of the engine are probably bottleneck anyway

//#define USE_OLD_DAMPING_METHOD 1
#ifdef USE_OLD_DAMPING_METHOD
	m_linearVelocity *= GEN_clamped((btScalar(1.) - timeStep * m_linearDamping), (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
	m_angularVelocity *= GEN_clamped((btScalar(1.) - timeStep * m_angularDamping), (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
#else
	m_linearVelocity *= btPow(btScalar(1)-m_linearDamping, timeStep);
	m_angularVelocity *= btPow(btScalar(1)-m_angularDamping, timeStep);
#endif

	if (m_additionalDamping)
	{
		//Additional damping can help avoiding lowpass jitter motion, help stability for ragdolls etc.
		//Such damping is undesirable, so once the overall simulation quality of the rigid body dynamics system has improved, this should become obsolete
		if ((m_angularVelocity.length2() < m_additionalAngularDampingThresholdSqr) &&
			(m_linearVelocity.length2() < m_additionalLinearDampingThresholdSqr))
		{
			m_angularVelocity *= m_additionalDampingFactor;
			m_linearVelocity *= m_additionalDampingFactor;
		}
	

		btScalar speed = m_linearVelocity.length();
		if (speed < m_linearDamping)
		{
			btScalar dampVel = btScalar(0.005);
			if (speed > dampVel)
			{
				btVector3 dir = m_linearVelocity.normalized();
				m_linearVelocity -=  dir * dampVel;
			} else
			{
				m_linearVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
			}
		}

		btScalar angSpeed = m_angularVelocity.length();
		if (angSpeed < m_angularDamping)
		{
			btScalar angDampVel = btScalar(0.005);
			if (angSpeed > angDampVel)
			{
				btVector3 dir = m_angularVelocity.normalized();
				m_angularVelocity -=  dir * angDampVel;
			} else
			{
				m_angularVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
			}
		}
	}
}


void btRigidBody::applyGravity()
{
	if (isStaticOrKinematicObject())
		return;
	
	applyCentralForce(m_gravity);	

}

void btRigidBody::proceedToTransform(const btTransform& newTrans)
{
	setCenterOfMassTransform( newTrans );
}
	

void btRigidBody::setMassProps(btScalar mass, const btVector3& inertia)
{
	if (mass == btScalar(0.))
	{
		m_collisionFlags |= btCollisionObject::CF_STATIC_OBJECT;
		m_inverseMass = btScalar(0.);
	} else
	{
		m_collisionFlags &= (~btCollisionObject::CF_STATIC_OBJECT);
		m_inverseMass = btScalar(1.0) / mass;
	}

	//Fg = m * a
	m_gravity = mass * m_gravity_acceleration;
	
	m_invInertiaLocal.setValue(inertia.x() != btScalar(0.0) ? btScalar(1.0) / inertia.x(): btScalar(0.0),
				   inertia.y() != btScalar(0.0) ? btScalar(1.0) / inertia.y(): btScalar(0.0),
				   inertia.z() != btScalar(0.0) ? btScalar(1.0) / inertia.z(): btScalar(0.0));

	m_invMass = m_linearFactor*m_inverseMass;
}

	
void btRigidBody::updateInertiaTensor() 
{
	m_invInertiaTensorWorld = m_worldTransform.getBasis().scaled(m_invInertiaLocal) * m_worldTransform.getBasis().transpose();
}



btVector3 btRigidBody::getLocalInertia() const
{

	btVector3 inertiaLocal;
	const btVector3 inertia = m_invInertiaLocal;
	inertiaLocal.setValue(inertia.x() != btScalar(0.0) ? btScalar(1.0) / inertia.x() : btScalar(0.0),
		inertia.y() != btScalar(0.0) ? btScalar(1.0) / inertia.y() : btScalar(0.0),
		inertia.z() != btScalar(0.0) ? btScalar(1.0) / inertia.z() : btScalar(0.0));
	return inertiaLocal;
}

inline btVector3 evalEulerEqn(const btVector3& w1, const btVector3& w0, const btVector3& T, const btScalar dt,
	const btMatrix3x3 &I)
{
	const btVector3 w2 = I*w1 + w1.cross(I*w1)*dt - (T*dt + I*w0);
	return w2;
}

inline btMatrix3x3 evalEulerEqnDeriv(const btVector3& w1, const btVector3& w0, const btScalar dt,
	const btMatrix3x3 &I)
{

	btMatrix3x3 w1x, Iw1x;
	const btVector3 Iwi = (I*w1);
	w1.getSkewSymmetricMatrix(&w1x[0], &w1x[1], &w1x[2]);
	Iwi.getSkewSymmetricMatrix(&Iw1x[0], &Iw1x[1], &Iw1x[2]);

	const btMatrix3x3 dfw1 = I + (w1x*I - Iw1x)*dt;
	return dfw1;
}

btVector3 btRigidBody::computeGyroscopicForceExplicit(btScalar maxGyroscopicForce) const
{
	btVector3 inertiaLocal = getLocalInertia();
	btMatrix3x3 inertiaTensorWorld = getWorldTransform().getBasis().scaled(inertiaLocal) * getWorldTransform().getBasis().transpose();
	btVector3 tmp = inertiaTensorWorld*getAngularVelocity();
	btVector3 gf = getAngularVelocity().cross(tmp);
	btScalar l2 = gf.length2();
	if (l2>maxGyroscopicForce*maxGyroscopicForce)
	{
		gf *= btScalar(1.)/btSqrt(l2)*maxGyroscopicForce;
	}
	return gf;
}


btVector3 btRigidBody::computeGyroscopicImpulseImplicit_Body(btScalar step) const
{	
	btVector3 idl = getLocalInertia();
	btVector3 omega1 = getAngularVelocity();
	btQuaternion q = getWorldTransform().getRotation();
	
	// Convert to body coordinates
	btVector3 omegab = quatRotate(q.inverse(), omega1);
	btMatrix3x3 Ib;
	Ib.setValue(idl.x(),0,0,
				0,idl.y(),0,
				0,0,idl.z());
	
	btVector3 ibo = Ib*omegab;

	// Residual vector
	btVector3 f = step * omegab.cross(ibo);
	
	btMatrix3x3 skew0;
	omegab.getSkewSymmetricMatrix(&skew0[0], &skew0[1], &skew0[2]);
	btVector3 om = Ib*omegab;
	btMatrix3x3 skew1;
	om.getSkewSymmetricMatrix(&skew1[0],&skew1[1],&skew1[2]);
	
	// Jacobian
	btMatrix3x3 J = Ib +  (skew0*Ib - skew1)*step;
	
//	btMatrix3x3 Jinv = J.inverse();
//	btVector3 omega_div = Jinv*f;
	btVector3 omega_div = J.solve33(f);
	
	// Single Newton-Raphson update
	omegab = omegab - omega_div;//Solve33(J, f);
	// Back to world coordinates
	btVector3 omega2 = quatRotate(q,omegab);
	btVector3 gf = omega2-omega1;
	return gf;
}



btVector3 btRigidBody::computeGyroscopicImpulseImplicit_World(btScalar step) const
{
	// use full newton-euler equations.  common practice to drop the wxIw term. want it for better tumbling behavior.
	// calculate using implicit euler step so it's stable.

	const btVector3 inertiaLocal = getLocalInertia();
	const btVector3 w0 = getAngularVelocity();

	btMatrix3x3 I;

	I = m_worldTransform.getBasis().scaled(inertiaLocal) *
		m_worldTransform.getBasis().transpose();

	// use newtons method to find implicit solution for new angular velocity (w')
	// f(w') = -(T*step + Iw) + Iw' + w' + w'xIw'*step = 0 
	// df/dw' = I + 1xIw'*step + w'xI*step

	btVector3 w1 = w0;

	// one step of newton's method
	{
		const btVector3 fw = evalEulerEqn(w1, w0, btVector3(0, 0, 0), step, I);
		const btMatrix3x3 dfw = evalEulerEqnDeriv(w1, w0, step, I);

		btVector3 dw;
		dw = dfw.solve33(fw);
		//const btMatrix3x3 dfw_inv = dfw.inverse();
		//dw = dfw_inv*fw;

		w1 -= dw;
	}

	btVector3 gf = (w1 - w0);
	return gf;
}


void btRigidBody::integrateVelocities(btScalar step) 
{
	if (isStaticOrKinematicObject())
		return;

	m_linearVelocity += m_totalForce * (m_inverseMass * step);
	m_angularVelocity += m_invInertiaTensorWorld * m_totalTorque * step;

#define MAX_ANGVEL SIMD_HALF_PI
	/// clamp angular velocity. collision calculations will fail on higher angular velocities	
	btScalar angvel = m_angularVelocity.length();
	if (angvel*step > MAX_ANGVEL)
	{
		m_angularVelocity *= (MAX_ANGVEL/step) /angvel;
	}

}

btQuaternion btRigidBody::getOrientation() const
{
		btQuaternion orn;
		m_worldTransform.getBasis().getRotation(orn);
		return orn;
}
	
	
void btRigidBody::setCenterOfMassTransform(const btTransform& xform)
{

	if (isKinematicObject())
	{
		m_interpolationWorldTransform = m_worldTransform;
	} else
	{
		m_interpolationWorldTransform = xform;
	}
	m_interpolationLinearVelocity = getLinearVelocity();
	m_interpolationAngularVelocity = getAngularVelocity();
	m_worldTransform = xform;
	updateInertiaTensor();
}





void btRigidBody::addConstraintRef(btTypedConstraint* c)
{
	///disable collision with the 'other' body

	int index = m_constraintRefs.findLinearSearch(c);
	//don't add constraints that are already referenced
	//btAssert(index == m_constraintRefs.size());
	if (index == m_constraintRefs.size())
	{
		m_constraintRefs.push_back(c);
		btCollisionObject* colObjA = &c->getRigidBodyA();
		btCollisionObject* colObjB = &c->getRigidBodyB();
		if (colObjA == this)
		{
			colObjA->setIgnoreCollisionCheck(colObjB, true);
		}
		else
		{
			colObjB->setIgnoreCollisionCheck(colObjA, true);
		}
	} 
}

void btRigidBody::removeConstraintRef(btTypedConstraint* c)
{
	int index = m_constraintRefs.findLinearSearch(c);
	//don't remove constraints that are not referenced
	if(index < m_constraintRefs.size())
    {
        m_constraintRefs.remove(c);
        btCollisionObject* colObjA = &c->getRigidBodyA();
        btCollisionObject* colObjB = &c->getRigidBodyB();
        if (colObjA == this)
        {
            colObjA->setIgnoreCollisionCheck(colObjB, false);
        }
        else
        {
            colObjB->setIgnoreCollisionCheck(colObjA, false);
        }
    }
}

int	btRigidBody::calculateSerializeBufferSize()	const
{
	int sz = sizeof(btRigidBodyData);
	return sz;
}

	///fills the dataBuffer and returns the struct name (and 0 on failure)
const char*	btRigidBody::serialize(void* dataBuffer, class btSerializer* serializer) const
{
	btRigidBodyData* rbd = (btRigidBodyData*) dataBuffer;

	btCollisionObject::serialize(&rbd->m_collisionObjectData, serializer);

	m_invInertiaTensorWorld.serialize(rbd->m_invInertiaTensorWorld);
	m_linearVelocity.serialize(rbd->m_linearVelocity);
	m_angularVelocity.serialize(rbd->m_angularVelocity);
	rbd->m_inverseMass = m_inverseMass;
	m_angularFactor.serialize(rbd->m_angularFactor);
	m_linearFactor.serialize(rbd->m_linearFactor);
	m_gravity.serialize(rbd->m_gravity);
	m_gravity_acceleration.serialize(rbd->m_gravity_acceleration);
	m_invInertiaLocal.serialize(rbd->m_invInertiaLocal);
	m_totalForce.serialize(rbd->m_totalForce);
	m_totalTorque.serialize(rbd->m_totalTorque);
	rbd->m_linearDamping = m_linearDamping;
	rbd->m_angularDamping = m_angularDamping;
	rbd->m_additionalDamping = m_additionalDamping;
	rbd->m_additionalDampingFactor = m_additionalDampingFactor;
	rbd->m_additionalLinearDampingThresholdSqr = m_additionalLinearDampingThresholdSqr;
	rbd->m_additionalAngularDampingThresholdSqr = m_additionalAngularDampingThresholdSqr;
	rbd->m_additionalAngularDampingFactor = m_additionalAngularDampingFactor;
	rbd->m_linearSleepingThreshold=m_linearSleepingThreshold;
	rbd->m_angularSleepingThreshold = m_angularSleepingThreshold;

	// Fill padding with zeros to appease msan.
#ifdef BT_USE_DOUBLE_PRECISION
	memset(rbd->m_padding, 0, sizeof(rbd->m_padding));
#endif

	return btRigidBodyDataName;
}



void btRigidBody::serializeSingleObject(class btSerializer* serializer) const
{
	btChunk* chunk = serializer->allocate(calculateSerializeBufferSize(),1);
	const char* structType = serialize(chunk->m_oldPtr, serializer);
	serializer->finalizeChunk(chunk,structType,BT_RIGIDBODY_CODE,(void*)this);
}