summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletDynamics/ConstraintSolver/btNNCGConstraintSolver.cpp
blob: f3979be358a50b6391f375c4c9d22d92d38dc079 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#include "btNNCGConstraintSolver.h"






btScalar btNNCGConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
{
	btScalar val = btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup( bodies,numBodies,manifoldPtr, numManifolds, constraints,numConstraints,infoGlobal,debugDrawer);

	m_pNC.resizeNoInitialize(m_tmpSolverNonContactConstraintPool.size());
	m_pC.resizeNoInitialize(m_tmpSolverContactConstraintPool.size());
	m_pCF.resizeNoInitialize(m_tmpSolverContactFrictionConstraintPool.size());
	m_pCRF.resizeNoInitialize(m_tmpSolverContactRollingFrictionConstraintPool.size());

	m_deltafNC.resizeNoInitialize(m_tmpSolverNonContactConstraintPool.size());
	m_deltafC.resizeNoInitialize(m_tmpSolverContactConstraintPool.size());
	m_deltafCF.resizeNoInitialize(m_tmpSolverContactFrictionConstraintPool.size());
	m_deltafCRF.resizeNoInitialize(m_tmpSolverContactRollingFrictionConstraintPool.size());

	return val;
}

btScalar btNNCGConstraintSolver::solveSingleIteration(int iteration, btCollisionObject** /*bodies */,int /*numBodies*/,btPersistentManifold** /*manifoldPtr*/, int /*numManifolds*/,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* /*debugDrawer*/)
{

	int numNonContactPool = m_tmpSolverNonContactConstraintPool.size();
	int numConstraintPool = m_tmpSolverContactConstraintPool.size();
	int numFrictionPool = m_tmpSolverContactFrictionConstraintPool.size();

	if (infoGlobal.m_solverMode & SOLVER_RANDMIZE_ORDER)
	{
		if (1)			// uncomment this for a bit less random ((iteration & 7) == 0)
		{

			for (int j=0; j<numNonContactPool; ++j) {
				int tmp = m_orderNonContactConstraintPool[j];
				int swapi = btRandInt2(j+1);
				m_orderNonContactConstraintPool[j] = m_orderNonContactConstraintPool[swapi];
				m_orderNonContactConstraintPool[swapi] = tmp;
			}

			//contact/friction constraints are not solved more than 
			if (iteration< infoGlobal.m_numIterations)
			{
				for (int j=0; j<numConstraintPool; ++j) {
					int tmp = m_orderTmpConstraintPool[j];
					int swapi = btRandInt2(j+1);
					m_orderTmpConstraintPool[j] = m_orderTmpConstraintPool[swapi];
					m_orderTmpConstraintPool[swapi] = tmp;
				}

				for (int j=0; j<numFrictionPool; ++j) {
					int tmp = m_orderFrictionConstraintPool[j];
					int swapi = btRandInt2(j+1);
					m_orderFrictionConstraintPool[j] = m_orderFrictionConstraintPool[swapi];
					m_orderFrictionConstraintPool[swapi] = tmp;
				}
			}
		}
	}


	btScalar deltaflengthsqr = 0;
	{
		for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
		{
			btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[m_orderNonContactConstraintPool[j]];
			if (iteration < constraint.m_overrideNumSolverIterations) 
			{
				btScalar deltaf = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[constraint.m_solverBodyIdA],m_tmpSolverBodyPool[constraint.m_solverBodyIdB],constraint);
				m_deltafNC[j] = deltaf;
				deltaflengthsqr += deltaf * deltaf;
			}
		}
	}


	if (m_onlyForNoneContact) 
	{
		if (iteration==0) 
		{
			for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++) m_pNC[j] = m_deltafNC[j];
		} else {
			// deltaflengthsqrprev can be 0 only if the solver solved the problem exactly in the previous iteration. In this case we should have quit, but mainly for debug reason with this 'hack' it is now allowed to continue the calculation
			btScalar beta = m_deltafLengthSqrPrev>0 ? deltaflengthsqr / m_deltafLengthSqrPrev : 2;
			if (beta>1) 
			{
				for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++) m_pNC[j] = 0;
			} else 
			{
				for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
				{
					btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[m_orderNonContactConstraintPool[j]];
					if (iteration < constraint.m_overrideNumSolverIterations) 
					{
						btScalar additionaldeltaimpulse = beta * m_pNC[j];
						constraint.m_appliedImpulse = btScalar(constraint.m_appliedImpulse) + additionaldeltaimpulse;
						m_pNC[j] = beta * m_pNC[j] + m_deltafNC[j];
						btSolverBody& body1 = m_tmpSolverBodyPool[constraint.m_solverBodyIdA];
						btSolverBody& body2 = m_tmpSolverBodyPool[constraint.m_solverBodyIdB];
						const btSolverConstraint& c = constraint;
						body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,additionaldeltaimpulse);
						body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,additionaldeltaimpulse);
					}
				}
			}
		}
		m_deltafLengthSqrPrev = deltaflengthsqr;
	}



	{

		if (iteration< infoGlobal.m_numIterations)
		{
			for (int j=0;j<numConstraints;j++)
			{
				if (constraints[j]->isEnabled())
				{
					int bodyAid = getOrInitSolverBody(constraints[j]->getRigidBodyA(),infoGlobal.m_timeStep);
					int bodyBid = getOrInitSolverBody(constraints[j]->getRigidBodyB(),infoGlobal.m_timeStep);
					btSolverBody& bodyA = m_tmpSolverBodyPool[bodyAid];
					btSolverBody& bodyB = m_tmpSolverBodyPool[bodyBid];
					constraints[j]->solveConstraintObsolete(bodyA,bodyB,infoGlobal.m_timeStep);
				}
			}

			///solve all contact constraints
			if (infoGlobal.m_solverMode & SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS)
			{
				int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
				int multiplier = (infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)? 2 : 1;

				for (int c=0;c<numPoolConstraints;c++)
				{
					btScalar totalImpulse =0;

					{
						const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[c]];
						btScalar deltaf = resolveSingleConstraintRowLowerLimit(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
						m_deltafC[c] = deltaf;
						deltaflengthsqr += deltaf*deltaf;
						totalImpulse = solveManifold.m_appliedImpulse;
					}
					bool applyFriction = true;
					if (applyFriction)
					{
						{

							btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[c*multiplier]];

							if (totalImpulse>btScalar(0))
							{
								solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
								solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
								btScalar deltaf = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
								m_deltafCF[c*multiplier] = deltaf;
								deltaflengthsqr += deltaf*deltaf;
							} else {
								m_deltafCF[c*multiplier] = 0;
							}
						}

						if (infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)
						{

							btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[c*multiplier+1]];

							if (totalImpulse>btScalar(0))
							{
								solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
								solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
								btScalar deltaf = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
								m_deltafCF[c*multiplier+1] = deltaf;
								deltaflengthsqr += deltaf*deltaf;
							} else {
								m_deltafCF[c*multiplier+1] = 0;
							}
						}
					}
				}

			}
			else//SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS
			{
				//solve the friction constraints after all contact constraints, don't interleave them
				int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
				int j;

				for (j=0;j<numPoolConstraints;j++)
				{
					const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
					btScalar deltaf = resolveSingleConstraintRowLowerLimit(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
					m_deltafC[j] = deltaf;
					deltaflengthsqr += deltaf*deltaf;
				}



				///solve all friction constraints

				int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size();
				for (j=0;j<numFrictionPoolConstraints;j++)
				{
					btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]];
					btScalar totalImpulse = m_tmpSolverContactConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;

					if (totalImpulse>btScalar(0))
					{
						solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
						solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;

						btScalar deltaf = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
						m_deltafCF[j] = deltaf;
						deltaflengthsqr += deltaf*deltaf;
					} else {
						m_deltafCF[j] = 0;
					}
				}
			}

            {
				int numRollingFrictionPoolConstraints = m_tmpSolverContactRollingFrictionConstraintPool.size();
				for (int j=0;j<numRollingFrictionPoolConstraints;j++)
				{

					btSolverConstraint& rollingFrictionConstraint = m_tmpSolverContactRollingFrictionConstraintPool[j];
					btScalar totalImpulse = m_tmpSolverContactConstraintPool[rollingFrictionConstraint.m_frictionIndex].m_appliedImpulse;
					if (totalImpulse>btScalar(0))
					{
						btScalar rollingFrictionMagnitude = rollingFrictionConstraint.m_friction*totalImpulse;
						if (rollingFrictionMagnitude>rollingFrictionConstraint.m_friction)
							rollingFrictionMagnitude = rollingFrictionConstraint.m_friction;

						rollingFrictionConstraint.m_lowerLimit = -rollingFrictionMagnitude;
						rollingFrictionConstraint.m_upperLimit = rollingFrictionMagnitude;

						btScalar deltaf = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdA],m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdB],rollingFrictionConstraint);
						m_deltafCRF[j] = deltaf;
						deltaflengthsqr += deltaf*deltaf;
					} else {
						m_deltafCRF[j] = 0;
					}
				}
            }

		}



	}




	if (!m_onlyForNoneContact) 
	{
		if (iteration==0) 
		{
			for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++) m_pNC[j] = m_deltafNC[j];
			for (int j=0;j<m_tmpSolverContactConstraintPool.size();j++) m_pC[j] = m_deltafC[j];
			for (int j=0;j<m_tmpSolverContactFrictionConstraintPool.size();j++) m_pCF[j] = m_deltafCF[j];
			for (int j=0;j<m_tmpSolverContactRollingFrictionConstraintPool.size();j++) m_pCRF[j] = m_deltafCRF[j];
		} else 
		{
			// deltaflengthsqrprev can be 0 only if the solver solved the problem exactly in the previous iteration. In this case we should have quit, but mainly for debug reason with this 'hack' it is now allowed to continue the calculation
			btScalar beta = m_deltafLengthSqrPrev>0 ? deltaflengthsqr / m_deltafLengthSqrPrev : 2;
			if (beta>1) {
				for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++) m_pNC[j] = 0;
				for (int j=0;j<m_tmpSolverContactConstraintPool.size();j++) m_pC[j] = 0;
				for (int j=0;j<m_tmpSolverContactFrictionConstraintPool.size();j++) m_pCF[j] = 0;
				for (int j=0;j<m_tmpSolverContactRollingFrictionConstraintPool.size();j++) m_pCRF[j] = 0;
			} else {
				for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
				{
					btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[m_orderNonContactConstraintPool[j]];
					if (iteration < constraint.m_overrideNumSolverIterations) {
						btScalar additionaldeltaimpulse = beta * m_pNC[j];
						constraint.m_appliedImpulse = btScalar(constraint.m_appliedImpulse) + additionaldeltaimpulse;
						m_pNC[j] = beta * m_pNC[j] + m_deltafNC[j];
						btSolverBody& body1 = m_tmpSolverBodyPool[constraint.m_solverBodyIdA];
						btSolverBody& body2 = m_tmpSolverBodyPool[constraint.m_solverBodyIdB];
						const btSolverConstraint& c = constraint;
						body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,additionaldeltaimpulse);
						body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,additionaldeltaimpulse);
					}
				}
				for (int j=0;j<m_tmpSolverContactConstraintPool.size();j++)
				{
					btSolverConstraint& constraint = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
					if (iteration< infoGlobal.m_numIterations) {
						btScalar additionaldeltaimpulse = beta * m_pC[j];
						constraint.m_appliedImpulse = btScalar(constraint.m_appliedImpulse) + additionaldeltaimpulse;
						m_pC[j] = beta * m_pC[j] + m_deltafC[j];
						btSolverBody& body1 = m_tmpSolverBodyPool[constraint.m_solverBodyIdA];
						btSolverBody& body2 = m_tmpSolverBodyPool[constraint.m_solverBodyIdB];
						const btSolverConstraint& c = constraint;
						body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,additionaldeltaimpulse);
						body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,additionaldeltaimpulse);
					}
				}
				for (int j=0;j<m_tmpSolverContactFrictionConstraintPool.size();j++)
				{
					btSolverConstraint& constraint = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]];
					if (iteration< infoGlobal.m_numIterations) {
						btScalar additionaldeltaimpulse = beta * m_pCF[j];
						constraint.m_appliedImpulse = btScalar(constraint.m_appliedImpulse) + additionaldeltaimpulse;
						m_pCF[j] = beta * m_pCF[j] + m_deltafCF[j];
						btSolverBody& body1 = m_tmpSolverBodyPool[constraint.m_solverBodyIdA];
						btSolverBody& body2 = m_tmpSolverBodyPool[constraint.m_solverBodyIdB];
						const btSolverConstraint& c = constraint;
						body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,additionaldeltaimpulse);
						body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,additionaldeltaimpulse);
					}
				}
				{
					for (int j=0;j<m_tmpSolverContactRollingFrictionConstraintPool.size();j++)
					{
						btSolverConstraint& constraint = m_tmpSolverContactRollingFrictionConstraintPool[j];
						if (iteration< infoGlobal.m_numIterations) {
							btScalar additionaldeltaimpulse = beta * m_pCRF[j];
							constraint.m_appliedImpulse = btScalar(constraint.m_appliedImpulse) + additionaldeltaimpulse;
							m_pCRF[j] = beta * m_pCRF[j] + m_deltafCRF[j];
							btSolverBody& body1 = m_tmpSolverBodyPool[constraint.m_solverBodyIdA];
							btSolverBody& body2 = m_tmpSolverBodyPool[constraint.m_solverBodyIdB];
							const btSolverConstraint& c = constraint;
							body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,additionaldeltaimpulse);
							body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,additionaldeltaimpulse);
						}
					}
				}
			}
		}
		m_deltafLengthSqrPrev = deltaflengthsqr;
	}

	return deltaflengthsqr;
}

btScalar btNNCGConstraintSolver::solveGroupCacheFriendlyFinish(btCollisionObject** bodies,int numBodies,const btContactSolverInfo& infoGlobal)
{
	m_pNC.resizeNoInitialize(0);
	m_pC.resizeNoInitialize(0);
	m_pCF.resizeNoInitialize(0);
	m_pCRF.resizeNoInitialize(0);

	m_deltafNC.resizeNoInitialize(0);
	m_deltafC.resizeNoInitialize(0);
	m_deltafCF.resizeNoInitialize(0);
	m_deltafCRF.resizeNoInitialize(0);

	return btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyFinish(bodies, numBodies, infoGlobal);
}