1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
|
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
/*
2014 May: btGeneric6DofSpring2Constraint is created from the original (2.82.2712) btGeneric6DofConstraint by Gabor Puhr and Tamas Umenhoffer
Pros:
- Much more accurate and stable in a lot of situation. (Especially when a sleeping chain of RBs connected with 6dof2 is pulled)
- Stable and accurate spring with minimal energy loss that works with all of the solvers. (latter is not true for the original 6dof spring)
- Servo motor functionality
- Much more accurate bouncing. 0 really means zero bouncing (not true for the original 6odf) and there is only a minimal energy loss when the value is 1 (because of the solvers' precision)
- Rotation order for the Euler system can be set. (One axis' freedom is still limited to pi/2)
Cons:
- It is slower than the original 6dof. There is no exact ratio, but half speed is a good estimation. (with PGS)
- At bouncing the correct velocity is calculated, but not the correct position. (it is because of the solver can correct position or velocity, but not both.)
*/
/// 2009 March: btGeneric6DofConstraint refactored by Roman Ponomarev
/// Added support for generic constraint solver through getInfo1/getInfo2 methods
/*
2007-09-09
btGeneric6DofConstraint Refactored by Francisco Le?n
email: projectileman@yahoo.com
http://gimpact.sf.net
*/
#include "btGeneric6DofSpring2Constraint.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include "LinearMath/btTransformUtil.h"
#include <new>
btGeneric6DofSpring2Constraint::btGeneric6DofSpring2Constraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, RotateOrder rotOrder)
: btTypedConstraint(D6_SPRING_2_CONSTRAINT_TYPE, rbA, rbB), m_frameInA(frameInA), m_frameInB(frameInB), m_rotateOrder(rotOrder), m_flags(0)
{
calculateTransforms();
}
btGeneric6DofSpring2Constraint::btGeneric6DofSpring2Constraint(btRigidBody& rbB, const btTransform& frameInB, RotateOrder rotOrder)
: btTypedConstraint(D6_SPRING_2_CONSTRAINT_TYPE, getFixedBody(), rbB), m_frameInB(frameInB), m_rotateOrder(rotOrder), m_flags(0)
{
///not providing rigidbody A means implicitly using worldspace for body A
m_frameInA = rbB.getCenterOfMassTransform() * m_frameInB;
calculateTransforms();
}
btScalar btGeneric6DofSpring2Constraint::btGetMatrixElem(const btMatrix3x3& mat, int index)
{
int i = index % 3;
int j = index / 3;
return mat[i][j];
}
// MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html
bool btGeneric6DofSpring2Constraint::matrixToEulerXYZ(const btMatrix3x3& mat, btVector3& xyz)
{
// rot = cy*cz -cy*sz sy
// cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
btScalar fi = btGetMatrixElem(mat, 2);
if (fi < btScalar(1.0f))
{
if (fi > btScalar(-1.0f))
{
xyz[0] = btAtan2(-btGetMatrixElem(mat, 5), btGetMatrixElem(mat, 8));
xyz[1] = btAsin(btGetMatrixElem(mat, 2));
xyz[2] = btAtan2(-btGetMatrixElem(mat, 1), btGetMatrixElem(mat, 0));
return true;
}
else
{
// WARNING. Not unique. XA - ZA = -atan2(r10,r11)
xyz[0] = -btAtan2(btGetMatrixElem(mat, 3), btGetMatrixElem(mat, 4));
xyz[1] = -SIMD_HALF_PI;
xyz[2] = btScalar(0.0);
return false;
}
}
else
{
// WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11)
xyz[0] = btAtan2(btGetMatrixElem(mat, 3), btGetMatrixElem(mat, 4));
xyz[1] = SIMD_HALF_PI;
xyz[2] = 0.0;
}
return false;
}
bool btGeneric6DofSpring2Constraint::matrixToEulerXZY(const btMatrix3x3& mat, btVector3& xyz)
{
// rot = cy*cz -sz sy*cz
// cy*cx*sz+sx*sy cx*cz sy*cx*sz-cy*sx
// cy*sx*sz-cx*sy sx*cz sy*sx*sz+cx*cy
btScalar fi = btGetMatrixElem(mat, 1);
if (fi < btScalar(1.0f))
{
if (fi > btScalar(-1.0f))
{
xyz[0] = btAtan2(btGetMatrixElem(mat, 7), btGetMatrixElem(mat, 4));
xyz[1] = btAtan2(btGetMatrixElem(mat, 2), btGetMatrixElem(mat, 0));
xyz[2] = btAsin(-btGetMatrixElem(mat, 1));
return true;
}
else
{
xyz[0] = -btAtan2(-btGetMatrixElem(mat, 6), btGetMatrixElem(mat, 8));
xyz[1] = btScalar(0.0);
xyz[2] = SIMD_HALF_PI;
return false;
}
}
else
{
xyz[0] = btAtan2(-btGetMatrixElem(mat, 6), btGetMatrixElem(mat, 8));
xyz[1] = 0.0;
xyz[2] = -SIMD_HALF_PI;
}
return false;
}
bool btGeneric6DofSpring2Constraint::matrixToEulerYXZ(const btMatrix3x3& mat, btVector3& xyz)
{
// rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy
// cx*sz cx*cz -sx
// cy*sx*sz-cz*sy sy*sz+cy*cz*sx cy*cx
btScalar fi = btGetMatrixElem(mat, 5);
if (fi < btScalar(1.0f))
{
if (fi > btScalar(-1.0f))
{
xyz[0] = btAsin(-btGetMatrixElem(mat, 5));
xyz[1] = btAtan2(btGetMatrixElem(mat, 2), btGetMatrixElem(mat, 8));
xyz[2] = btAtan2(btGetMatrixElem(mat, 3), btGetMatrixElem(mat, 4));
return true;
}
else
{
xyz[0] = SIMD_HALF_PI;
xyz[1] = -btAtan2(-btGetMatrixElem(mat, 1), btGetMatrixElem(mat, 0));
xyz[2] = btScalar(0.0);
return false;
}
}
else
{
xyz[0] = -SIMD_HALF_PI;
xyz[1] = btAtan2(-btGetMatrixElem(mat, 1), btGetMatrixElem(mat, 0));
xyz[2] = 0.0;
}
return false;
}
bool btGeneric6DofSpring2Constraint::matrixToEulerYZX(const btMatrix3x3& mat, btVector3& xyz)
{
// rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx
// sz cz*cx -cz*sx
// -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx
btScalar fi = btGetMatrixElem(mat, 3);
if (fi < btScalar(1.0f))
{
if (fi > btScalar(-1.0f))
{
xyz[0] = btAtan2(-btGetMatrixElem(mat, 5), btGetMatrixElem(mat, 4));
xyz[1] = btAtan2(-btGetMatrixElem(mat, 6), btGetMatrixElem(mat, 0));
xyz[2] = btAsin(btGetMatrixElem(mat, 3));
return true;
}
else
{
xyz[0] = btScalar(0.0);
xyz[1] = -btAtan2(btGetMatrixElem(mat, 7), btGetMatrixElem(mat, 8));
xyz[2] = -SIMD_HALF_PI;
return false;
}
}
else
{
xyz[0] = btScalar(0.0);
xyz[1] = btAtan2(btGetMatrixElem(mat, 7), btGetMatrixElem(mat, 8));
xyz[2] = SIMD_HALF_PI;
}
return false;
}
bool btGeneric6DofSpring2Constraint::matrixToEulerZXY(const btMatrix3x3& mat, btVector3& xyz)
{
// rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx
// cy*sz+cz*sx*sy cz*cx sz*sy-cz*xy*sx
// -cx*sy sx cx*cy
btScalar fi = btGetMatrixElem(mat, 7);
if (fi < btScalar(1.0f))
{
if (fi > btScalar(-1.0f))
{
xyz[0] = btAsin(btGetMatrixElem(mat, 7));
xyz[1] = btAtan2(-btGetMatrixElem(mat, 6), btGetMatrixElem(mat, 8));
xyz[2] = btAtan2(-btGetMatrixElem(mat, 1), btGetMatrixElem(mat, 4));
return true;
}
else
{
xyz[0] = -SIMD_HALF_PI;
xyz[1] = btScalar(0.0);
xyz[2] = -btAtan2(btGetMatrixElem(mat, 2), btGetMatrixElem(mat, 0));
return false;
}
}
else
{
xyz[0] = SIMD_HALF_PI;
xyz[1] = btScalar(0.0);
xyz[2] = btAtan2(btGetMatrixElem(mat, 2), btGetMatrixElem(mat, 0));
}
return false;
}
bool btGeneric6DofSpring2Constraint::matrixToEulerZYX(const btMatrix3x3& mat, btVector3& xyz)
{
// rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*sy
// cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx
// -sy cy*sx cy*cx
btScalar fi = btGetMatrixElem(mat, 6);
if (fi < btScalar(1.0f))
{
if (fi > btScalar(-1.0f))
{
xyz[0] = btAtan2(btGetMatrixElem(mat, 7), btGetMatrixElem(mat, 8));
xyz[1] = btAsin(-btGetMatrixElem(mat, 6));
xyz[2] = btAtan2(btGetMatrixElem(mat, 3), btGetMatrixElem(mat, 0));
return true;
}
else
{
xyz[0] = btScalar(0.0);
xyz[1] = SIMD_HALF_PI;
xyz[2] = -btAtan2(btGetMatrixElem(mat, 1), btGetMatrixElem(mat, 2));
return false;
}
}
else
{
xyz[0] = btScalar(0.0);
xyz[1] = -SIMD_HALF_PI;
xyz[2] = btAtan2(-btGetMatrixElem(mat, 1), -btGetMatrixElem(mat, 2));
}
return false;
}
void btGeneric6DofSpring2Constraint::calculateAngleInfo()
{
btMatrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse() * m_calculatedTransformB.getBasis();
switch (m_rotateOrder)
{
case RO_XYZ:
matrixToEulerXYZ(relative_frame, m_calculatedAxisAngleDiff);
break;
case RO_XZY:
matrixToEulerXZY(relative_frame, m_calculatedAxisAngleDiff);
break;
case RO_YXZ:
matrixToEulerYXZ(relative_frame, m_calculatedAxisAngleDiff);
break;
case RO_YZX:
matrixToEulerYZX(relative_frame, m_calculatedAxisAngleDiff);
break;
case RO_ZXY:
matrixToEulerZXY(relative_frame, m_calculatedAxisAngleDiff);
break;
case RO_ZYX:
matrixToEulerZYX(relative_frame, m_calculatedAxisAngleDiff);
break;
default:
btAssert(false);
}
// in euler angle mode we do not actually constrain the angular velocity
// along the axes axis[0] and axis[2] (although we do use axis[1]) :
//
// to get constrain w2-w1 along ...not
// ------ --------------------- ------
// d(angle[0])/dt = 0 ax[1] x ax[2] ax[0]
// d(angle[1])/dt = 0 ax[1]
// d(angle[2])/dt = 0 ax[0] x ax[1] ax[2]
//
// constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0.
// to prove the result for angle[0], write the expression for angle[0] from
// GetInfo1 then take the derivative. to prove this for angle[2] it is
// easier to take the euler rate expression for d(angle[2])/dt with respect
// to the components of w and set that to 0.
switch (m_rotateOrder)
{
case RO_XYZ:
{
//Is this the "line of nodes" calculation choosing planes YZ (B coordinate system) and xy (A coordinate system)? (http://en.wikipedia.org/wiki/Euler_angles)
//The two planes are non-homologous, so this is a Tait–Bryan angle formalism and not a proper Euler
//Extrinsic rotations are equal to the reversed order intrinsic rotations so the above xyz extrinsic rotations (axes are fixed) are the same as the zy'x" intrinsic rotations (axes are refreshed after each rotation)
//that is why xy and YZ planes are chosen (this will describe a zy'x" intrinsic rotation) (see the figure on the left at http://en.wikipedia.org/wiki/Euler_angles under Tait–Bryan angles)
// x' = Nperp = N.cross(axis2)
// y' = N = axis2.cross(axis0)
// z' = z
//
// x" = X
// y" = y'
// z" = ??
//in other words:
//first rotate around z
//second rotate around y'= z.cross(X)
//third rotate around x" = X
//Original XYZ extrinsic rotation order.
//Planes: xy and YZ normals: z, X. Plane intersection (N) is z.cross(X)
btVector3 axis0 = m_calculatedTransformB.getBasis().getColumn(0);
btVector3 axis2 = m_calculatedTransformA.getBasis().getColumn(2);
m_calculatedAxis[1] = axis2.cross(axis0);
m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2);
m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]);
break;
}
case RO_XZY:
{
//planes: xz,ZY normals: y, X
//first rotate around y
//second rotate around z'= y.cross(X)
//third rotate around x" = X
btVector3 axis0 = m_calculatedTransformB.getBasis().getColumn(0);
btVector3 axis1 = m_calculatedTransformA.getBasis().getColumn(1);
m_calculatedAxis[2] = axis0.cross(axis1);
m_calculatedAxis[0] = axis1.cross(m_calculatedAxis[2]);
m_calculatedAxis[1] = m_calculatedAxis[2].cross(axis0);
break;
}
case RO_YXZ:
{
//planes: yx,XZ normals: z, Y
//first rotate around z
//second rotate around x'= z.cross(Y)
//third rotate around y" = Y
btVector3 axis1 = m_calculatedTransformB.getBasis().getColumn(1);
btVector3 axis2 = m_calculatedTransformA.getBasis().getColumn(2);
m_calculatedAxis[0] = axis1.cross(axis2);
m_calculatedAxis[1] = axis2.cross(m_calculatedAxis[0]);
m_calculatedAxis[2] = m_calculatedAxis[0].cross(axis1);
break;
}
case RO_YZX:
{
//planes: yz,ZX normals: x, Y
//first rotate around x
//second rotate around z'= x.cross(Y)
//third rotate around y" = Y
btVector3 axis0 = m_calculatedTransformA.getBasis().getColumn(0);
btVector3 axis1 = m_calculatedTransformB.getBasis().getColumn(1);
m_calculatedAxis[2] = axis0.cross(axis1);
m_calculatedAxis[0] = axis1.cross(m_calculatedAxis[2]);
m_calculatedAxis[1] = m_calculatedAxis[2].cross(axis0);
break;
}
case RO_ZXY:
{
//planes: zx,XY normals: y, Z
//first rotate around y
//second rotate around x'= y.cross(Z)
//third rotate around z" = Z
btVector3 axis1 = m_calculatedTransformA.getBasis().getColumn(1);
btVector3 axis2 = m_calculatedTransformB.getBasis().getColumn(2);
m_calculatedAxis[0] = axis1.cross(axis2);
m_calculatedAxis[1] = axis2.cross(m_calculatedAxis[0]);
m_calculatedAxis[2] = m_calculatedAxis[0].cross(axis1);
break;
}
case RO_ZYX:
{
//planes: zy,YX normals: x, Z
//first rotate around x
//second rotate around y' = x.cross(Z)
//third rotate around z" = Z
btVector3 axis0 = m_calculatedTransformA.getBasis().getColumn(0);
btVector3 axis2 = m_calculatedTransformB.getBasis().getColumn(2);
m_calculatedAxis[1] = axis2.cross(axis0);
m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2);
m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]);
break;
}
default:
btAssert(false);
}
m_calculatedAxis[0].normalize();
m_calculatedAxis[1].normalize();
m_calculatedAxis[2].normalize();
}
void btGeneric6DofSpring2Constraint::calculateTransforms()
{
calculateTransforms(m_rbA.getCenterOfMassTransform(), m_rbB.getCenterOfMassTransform());
}
void btGeneric6DofSpring2Constraint::calculateTransforms(const btTransform& transA, const btTransform& transB)
{
m_calculatedTransformA = transA * m_frameInA;
m_calculatedTransformB = transB * m_frameInB;
calculateLinearInfo();
calculateAngleInfo();
btScalar miA = getRigidBodyA().getInvMass();
btScalar miB = getRigidBodyB().getInvMass();
m_hasStaticBody = (miA < SIMD_EPSILON) || (miB < SIMD_EPSILON);
btScalar miS = miA + miB;
if (miS > btScalar(0.f))
{
m_factA = miB / miS;
}
else
{
m_factA = btScalar(0.5f);
}
m_factB = btScalar(1.0f) - m_factA;
}
void btGeneric6DofSpring2Constraint::testAngularLimitMotor(int axis_index)
{
btScalar angle = m_calculatedAxisAngleDiff[axis_index];
angle = btAdjustAngleToLimits(angle, m_angularLimits[axis_index].m_loLimit, m_angularLimits[axis_index].m_hiLimit);
m_angularLimits[axis_index].m_currentPosition = angle;
m_angularLimits[axis_index].testLimitValue(angle);
}
void btGeneric6DofSpring2Constraint::getInfo1(btConstraintInfo1* info)
{
//prepare constraint
calculateTransforms(m_rbA.getCenterOfMassTransform(), m_rbB.getCenterOfMassTransform());
info->m_numConstraintRows = 0;
info->nub = 0;
int i;
//test linear limits
for (i = 0; i < 3; i++)
{
if (m_linearLimits.m_currentLimit[i] == 4)
info->m_numConstraintRows += 2;
else if (m_linearLimits.m_currentLimit[i] != 0)
info->m_numConstraintRows += 1;
if (m_linearLimits.m_enableMotor[i]) info->m_numConstraintRows += 1;
if (m_linearLimits.m_enableSpring[i]) info->m_numConstraintRows += 1;
}
//test angular limits
for (i = 0; i < 3; i++)
{
testAngularLimitMotor(i);
if (m_angularLimits[i].m_currentLimit == 4)
info->m_numConstraintRows += 2;
else if (m_angularLimits[i].m_currentLimit != 0)
info->m_numConstraintRows += 1;
if (m_angularLimits[i].m_enableMotor) info->m_numConstraintRows += 1;
if (m_angularLimits[i].m_enableSpring) info->m_numConstraintRows += 1;
}
}
void btGeneric6DofSpring2Constraint::getInfo2(btConstraintInfo2* info)
{
const btTransform& transA = m_rbA.getCenterOfMassTransform();
const btTransform& transB = m_rbB.getCenterOfMassTransform();
const btVector3& linVelA = m_rbA.getLinearVelocity();
const btVector3& linVelB = m_rbB.getLinearVelocity();
const btVector3& angVelA = m_rbA.getAngularVelocity();
const btVector3& angVelB = m_rbB.getAngularVelocity();
// for stability better to solve angular limits first
int row = setAngularLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
setLinearLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
}
int btGeneric6DofSpring2Constraint::setLinearLimits(btConstraintInfo2* info, int row, const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB)
{
//solve linear limits
btRotationalLimitMotor2 limot;
for (int i = 0; i < 3; i++)
{
if (m_linearLimits.m_currentLimit[i] || m_linearLimits.m_enableMotor[i] || m_linearLimits.m_enableSpring[i])
{ // re-use rotational motor code
limot.m_bounce = m_linearLimits.m_bounce[i];
limot.m_currentLimit = m_linearLimits.m_currentLimit[i];
limot.m_currentPosition = m_linearLimits.m_currentLinearDiff[i];
limot.m_currentLimitError = m_linearLimits.m_currentLimitError[i];
limot.m_currentLimitErrorHi = m_linearLimits.m_currentLimitErrorHi[i];
limot.m_enableMotor = m_linearLimits.m_enableMotor[i];
limot.m_servoMotor = m_linearLimits.m_servoMotor[i];
limot.m_servoTarget = m_linearLimits.m_servoTarget[i];
limot.m_enableSpring = m_linearLimits.m_enableSpring[i];
limot.m_springStiffness = m_linearLimits.m_springStiffness[i];
limot.m_springStiffnessLimited = m_linearLimits.m_springStiffnessLimited[i];
limot.m_springDamping = m_linearLimits.m_springDamping[i];
limot.m_springDampingLimited = m_linearLimits.m_springDampingLimited[i];
limot.m_equilibriumPoint = m_linearLimits.m_equilibriumPoint[i];
limot.m_hiLimit = m_linearLimits.m_upperLimit[i];
limot.m_loLimit = m_linearLimits.m_lowerLimit[i];
limot.m_maxMotorForce = m_linearLimits.m_maxMotorForce[i];
limot.m_targetVelocity = m_linearLimits.m_targetVelocity[i];
btVector3 axis = m_calculatedTransformA.getBasis().getColumn(i);
int flags = m_flags >> (i * BT_6DOF_FLAGS_AXIS_SHIFT2);
limot.m_stopCFM = (flags & BT_6DOF_FLAGS_CFM_STOP2) ? m_linearLimits.m_stopCFM[i] : info->cfm[0];
limot.m_stopERP = (flags & BT_6DOF_FLAGS_ERP_STOP2) ? m_linearLimits.m_stopERP[i] : info->erp;
limot.m_motorCFM = (flags & BT_6DOF_FLAGS_CFM_MOTO2) ? m_linearLimits.m_motorCFM[i] : info->cfm[0];
limot.m_motorERP = (flags & BT_6DOF_FLAGS_ERP_MOTO2) ? m_linearLimits.m_motorERP[i] : info->erp;
//rotAllowed is a bit of a magic from the original 6dof. The calculation of it here is something that imitates the original behavior as much as possible.
int indx1 = (i + 1) % 3;
int indx2 = (i + 2) % 3;
int rotAllowed = 1; // rotations around orthos to current axis (it is used only when one of the body is static)
#define D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION 1.0e-3
bool indx1Violated = m_angularLimits[indx1].m_currentLimit == 1 ||
m_angularLimits[indx1].m_currentLimit == 2 ||
(m_angularLimits[indx1].m_currentLimit == 3 && (m_angularLimits[indx1].m_currentLimitError < -D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION || m_angularLimits[indx1].m_currentLimitError > D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION)) ||
(m_angularLimits[indx1].m_currentLimit == 4 && (m_angularLimits[indx1].m_currentLimitError < -D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION || m_angularLimits[indx1].m_currentLimitErrorHi > D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION));
bool indx2Violated = m_angularLimits[indx2].m_currentLimit == 1 ||
m_angularLimits[indx2].m_currentLimit == 2 ||
(m_angularLimits[indx2].m_currentLimit == 3 && (m_angularLimits[indx2].m_currentLimitError < -D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION || m_angularLimits[indx2].m_currentLimitError > D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION)) ||
(m_angularLimits[indx2].m_currentLimit == 4 && (m_angularLimits[indx2].m_currentLimitError < -D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION || m_angularLimits[indx2].m_currentLimitErrorHi > D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION));
if (indx1Violated && indx2Violated)
{
rotAllowed = 0;
}
row += get_limit_motor_info2(&limot, transA, transB, linVelA, linVelB, angVelA, angVelB, info, row, axis, 0, rotAllowed);
}
}
return row;
}
int btGeneric6DofSpring2Constraint::setAngularLimits(btConstraintInfo2* info, int row_offset, const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB)
{
int row = row_offset;
//order of rotational constraint rows
int cIdx[] = {0, 1, 2};
switch (m_rotateOrder)
{
case RO_XYZ:
cIdx[0] = 0;
cIdx[1] = 1;
cIdx[2] = 2;
break;
case RO_XZY:
cIdx[0] = 0;
cIdx[1] = 2;
cIdx[2] = 1;
break;
case RO_YXZ:
cIdx[0] = 1;
cIdx[1] = 0;
cIdx[2] = 2;
break;
case RO_YZX:
cIdx[0] = 1;
cIdx[1] = 2;
cIdx[2] = 0;
break;
case RO_ZXY:
cIdx[0] = 2;
cIdx[1] = 0;
cIdx[2] = 1;
break;
case RO_ZYX:
cIdx[0] = 2;
cIdx[1] = 1;
cIdx[2] = 0;
break;
default:
btAssert(false);
}
for (int ii = 0; ii < 3; ii++)
{
int i = cIdx[ii];
if (m_angularLimits[i].m_currentLimit || m_angularLimits[i].m_enableMotor || m_angularLimits[i].m_enableSpring)
{
btVector3 axis = getAxis(i);
int flags = m_flags >> ((i + 3) * BT_6DOF_FLAGS_AXIS_SHIFT2);
if (!(flags & BT_6DOF_FLAGS_CFM_STOP2))
{
m_angularLimits[i].m_stopCFM = info->cfm[0];
}
if (!(flags & BT_6DOF_FLAGS_ERP_STOP2))
{
m_angularLimits[i].m_stopERP = info->erp;
}
if (!(flags & BT_6DOF_FLAGS_CFM_MOTO2))
{
m_angularLimits[i].m_motorCFM = info->cfm[0];
}
if (!(flags & BT_6DOF_FLAGS_ERP_MOTO2))
{
m_angularLimits[i].m_motorERP = info->erp;
}
row += get_limit_motor_info2(&m_angularLimits[i], transA, transB, linVelA, linVelB, angVelA, angVelB, info, row, axis, 1);
}
}
return row;
}
void btGeneric6DofSpring2Constraint::setFrames(const btTransform& frameA, const btTransform& frameB)
{
m_frameInA = frameA;
m_frameInB = frameB;
buildJacobian();
calculateTransforms();
}
void btGeneric6DofSpring2Constraint::calculateLinearInfo()
{
m_calculatedLinearDiff = m_calculatedTransformB.getOrigin() - m_calculatedTransformA.getOrigin();
m_calculatedLinearDiff = m_calculatedTransformA.getBasis().inverse() * m_calculatedLinearDiff;
for (int i = 0; i < 3; i++)
{
m_linearLimits.m_currentLinearDiff[i] = m_calculatedLinearDiff[i];
m_linearLimits.testLimitValue(i, m_calculatedLinearDiff[i]);
}
}
void btGeneric6DofSpring2Constraint::calculateJacobi(btRotationalLimitMotor2* limot, const btTransform& transA, const btTransform& transB, btConstraintInfo2* info, int srow, btVector3& ax1, int rotational, int rotAllowed)
{
btScalar* J1 = rotational ? info->m_J1angularAxis : info->m_J1linearAxis;
btScalar* J2 = rotational ? info->m_J2angularAxis : info->m_J2linearAxis;
J1[srow + 0] = ax1[0];
J1[srow + 1] = ax1[1];
J1[srow + 2] = ax1[2];
J2[srow + 0] = -ax1[0];
J2[srow + 1] = -ax1[1];
J2[srow + 2] = -ax1[2];
if (!rotational)
{
btVector3 tmpA, tmpB, relA, relB;
// get vector from bodyB to frameB in WCS
relB = m_calculatedTransformB.getOrigin() - transB.getOrigin();
// same for bodyA
relA = m_calculatedTransformA.getOrigin() - transA.getOrigin();
tmpA = relA.cross(ax1);
tmpB = relB.cross(ax1);
if (m_hasStaticBody && (!rotAllowed))
{
tmpA *= m_factA;
tmpB *= m_factB;
}
int i;
for (i = 0; i < 3; i++) info->m_J1angularAxis[srow + i] = tmpA[i];
for (i = 0; i < 3; i++) info->m_J2angularAxis[srow + i] = -tmpB[i];
}
}
int btGeneric6DofSpring2Constraint::get_limit_motor_info2(
btRotationalLimitMotor2* limot,
const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB,
btConstraintInfo2* info, int row, btVector3& ax1, int rotational, int rotAllowed)
{
int count = 0;
int srow = row * info->rowskip;
if (limot->m_currentLimit == 4)
{
btScalar vel = rotational ? angVelA.dot(ax1) - angVelB.dot(ax1) : linVelA.dot(ax1) - linVelB.dot(ax1);
calculateJacobi(limot, transA, transB, info, srow, ax1, rotational, rotAllowed);
info->m_constraintError[srow] = info->fps * limot->m_stopERP * limot->m_currentLimitError * (rotational ? -1 : 1);
if (rotational)
{
if (info->m_constraintError[srow] - vel * limot->m_stopERP > 0)
{
btScalar bounceerror = -limot->m_bounce * vel;
if (bounceerror > info->m_constraintError[srow]) info->m_constraintError[srow] = bounceerror;
}
}
else
{
if (info->m_constraintError[srow] - vel * limot->m_stopERP < 0)
{
btScalar bounceerror = -limot->m_bounce * vel;
if (bounceerror < info->m_constraintError[srow]) info->m_constraintError[srow] = bounceerror;
}
}
info->m_lowerLimit[srow] = rotational ? 0 : -SIMD_INFINITY;
info->m_upperLimit[srow] = rotational ? SIMD_INFINITY : 0;
info->cfm[srow] = limot->m_stopCFM;
srow += info->rowskip;
++count;
calculateJacobi(limot, transA, transB, info, srow, ax1, rotational, rotAllowed);
info->m_constraintError[srow] = info->fps * limot->m_stopERP * limot->m_currentLimitErrorHi * (rotational ? -1 : 1);
if (rotational)
{
if (info->m_constraintError[srow] - vel * limot->m_stopERP < 0)
{
btScalar bounceerror = -limot->m_bounce * vel;
if (bounceerror < info->m_constraintError[srow]) info->m_constraintError[srow] = bounceerror;
}
}
else
{
if (info->m_constraintError[srow] - vel * limot->m_stopERP > 0)
{
btScalar bounceerror = -limot->m_bounce * vel;
if (bounceerror > info->m_constraintError[srow]) info->m_constraintError[srow] = bounceerror;
}
}
info->m_lowerLimit[srow] = rotational ? -SIMD_INFINITY : 0;
info->m_upperLimit[srow] = rotational ? 0 : SIMD_INFINITY;
info->cfm[srow] = limot->m_stopCFM;
srow += info->rowskip;
++count;
}
else if (limot->m_currentLimit == 3)
{
calculateJacobi(limot, transA, transB, info, srow, ax1, rotational, rotAllowed);
info->m_constraintError[srow] = info->fps * limot->m_stopERP * limot->m_currentLimitError * (rotational ? -1 : 1);
info->m_lowerLimit[srow] = -SIMD_INFINITY;
info->m_upperLimit[srow] = SIMD_INFINITY;
info->cfm[srow] = limot->m_stopCFM;
srow += info->rowskip;
++count;
}
if (limot->m_enableMotor && !limot->m_servoMotor)
{
calculateJacobi(limot, transA, transB, info, srow, ax1, rotational, rotAllowed);
btScalar tag_vel = rotational ? limot->m_targetVelocity : -limot->m_targetVelocity;
btScalar mot_fact = getMotorFactor(limot->m_currentPosition,
limot->m_loLimit,
limot->m_hiLimit,
tag_vel,
info->fps * limot->m_motorERP);
info->m_constraintError[srow] = mot_fact * limot->m_targetVelocity;
info->m_lowerLimit[srow] = -limot->m_maxMotorForce / info->fps;
info->m_upperLimit[srow] = limot->m_maxMotorForce / info->fps;
info->cfm[srow] = limot->m_motorCFM;
srow += info->rowskip;
++count;
}
if (limot->m_enableMotor && limot->m_servoMotor)
{
btScalar error = limot->m_currentPosition - limot->m_servoTarget;
btScalar curServoTarget = limot->m_servoTarget;
if (rotational)
{
if (error > SIMD_PI)
{
error -= SIMD_2_PI;
curServoTarget += SIMD_2_PI;
}
if (error < -SIMD_PI)
{
error += SIMD_2_PI;
curServoTarget -= SIMD_2_PI;
}
}
calculateJacobi(limot, transA, transB, info, srow, ax1, rotational, rotAllowed);
btScalar targetvelocity = error < 0 ? -limot->m_targetVelocity : limot->m_targetVelocity;
btScalar tag_vel = -targetvelocity;
btScalar mot_fact;
if (error != 0)
{
btScalar lowLimit;
btScalar hiLimit;
if (limot->m_loLimit > limot->m_hiLimit)
{
lowLimit = error > 0 ? curServoTarget : -SIMD_INFINITY;
hiLimit = error < 0 ? curServoTarget : SIMD_INFINITY;
}
else
{
lowLimit = error > 0 && curServoTarget > limot->m_loLimit ? curServoTarget : limot->m_loLimit;
hiLimit = error < 0 && curServoTarget < limot->m_hiLimit ? curServoTarget : limot->m_hiLimit;
}
mot_fact = getMotorFactor(limot->m_currentPosition, lowLimit, hiLimit, tag_vel, info->fps * limot->m_motorERP);
}
else
{
mot_fact = 0;
}
info->m_constraintError[srow] = mot_fact * targetvelocity * (rotational ? -1 : 1);
info->m_lowerLimit[srow] = -limot->m_maxMotorForce / info->fps;
info->m_upperLimit[srow] = limot->m_maxMotorForce / info->fps;
info->cfm[srow] = limot->m_motorCFM;
srow += info->rowskip;
++count;
}
if (limot->m_enableSpring)
{
btScalar error = limot->m_currentPosition - limot->m_equilibriumPoint;
calculateJacobi(limot, transA, transB, info, srow, ax1, rotational, rotAllowed);
//btScalar cfm = 1.0 / ((1.0/info->fps)*limot->m_springStiffness+ limot->m_springDamping);
//if(cfm > 0.99999)
// cfm = 0.99999;
//btScalar erp = (1.0/info->fps)*limot->m_springStiffness / ((1.0/info->fps)*limot->m_springStiffness + limot->m_springDamping);
//info->m_constraintError[srow] = info->fps * erp * error * (rotational ? -1.0 : 1.0);
//info->m_lowerLimit[srow] = -SIMD_INFINITY;
//info->m_upperLimit[srow] = SIMD_INFINITY;
btScalar dt = BT_ONE / info->fps;
btScalar kd = limot->m_springDamping;
btScalar ks = limot->m_springStiffness;
btScalar vel;
if (rotational)
{
vel = angVelA.dot(ax1) - angVelB.dot(ax1);
}
else
{
btVector3 tanVelA = angVelA.cross(m_calculatedTransformA.getOrigin() - transA.getOrigin());
btVector3 tanVelB = angVelB.cross(m_calculatedTransformB.getOrigin() - transB.getOrigin());
vel = (linVelA + tanVelA).dot(ax1) - (linVelB + tanVelB).dot(ax1);
}
btScalar cfm = BT_ZERO;
btScalar mA = BT_ONE / m_rbA.getInvMass();
btScalar mB = BT_ONE / m_rbB.getInvMass();
if (rotational)
{
btScalar rrA = (m_calculatedTransformA.getOrigin() - transA.getOrigin()).length2();
btScalar rrB = (m_calculatedTransformB.getOrigin() - transB.getOrigin()).length2();
if (m_rbA.getInvMass()) mA = mA * rrA + 1 / (m_rbA.getInvInertiaTensorWorld() * ax1).length();
if (m_rbB.getInvMass()) mB = mB * rrB + 1 / (m_rbB.getInvInertiaTensorWorld() * ax1).length();
}
btScalar m;
if (m_rbA.getInvMass() == 0) m = mB; else
if (m_rbB.getInvMass() == 0) m = mA; else
m = mA*mB / (mA + mB);
btScalar angularfreq = sqrt(ks / m);
//limit stiffness (the spring should not be sampled faster that the quarter of its angular frequency)
if (limot->m_springStiffnessLimited && 0.25 < angularfreq * dt)
{
ks = BT_ONE / dt / dt / btScalar(16.0) * m;
}
//avoid damping that would blow up the spring
if (limot->m_springDampingLimited && kd * dt > m)
{
kd = m / dt;
}
btScalar fs = ks * error * dt;
btScalar fd = -kd * (vel) * (rotational ? -1 : 1) * dt;
btScalar f = (fs + fd);
// after the spring force affecting the body(es) the new velocity will be
// vel + f / m * (rotational ? -1 : 1)
// so in theory this should be set here for m_constraintError
// (with m_constraintError we set a desired velocity for the affected body(es))
// however in practice any value is fine as long as it is greater then the "proper" velocity,
// because the m_lowerLimit and the m_upperLimit will determinate the strength of the final pulling force
// so it is much simpler (and more robust) just to simply use inf (with the proper sign)
// (Even with our best intent the "new" velocity is only an estimation. If we underestimate
// the "proper" velocity that will weaken the spring, however if we overestimate it, it doesn't
// matter, because the solver will limit it according the force limit)
// you may also wonder what if the current velocity (vel) so high that the pulling force will not change its direction (in this iteration)
// will we not request a velocity with the wrong direction ?
// and the answer is not, because in practice during the solving the current velocity is subtracted from the m_constraintError
// so the sign of the force that is really matters
info->m_constraintError[srow] = (rotational ? -1 : 1) * (f < 0 ? -SIMD_INFINITY : SIMD_INFINITY);
btScalar minf = f < fd ? f : fd;
btScalar maxf = f < fd ? fd : f;
if (!rotational)
{
info->m_lowerLimit[srow] = minf > 0 ? 0 : minf;
info->m_upperLimit[srow] = maxf < 0 ? 0 : maxf;
}
else
{
info->m_lowerLimit[srow] = -maxf > 0 ? 0 : -maxf;
info->m_upperLimit[srow] = -minf < 0 ? 0 : -minf;
}
info->cfm[srow] = cfm;
srow += info->rowskip;
++count;
}
return count;
}
//override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
//If no axis is provided, it uses the default axis for this constraint.
void btGeneric6DofSpring2Constraint::setParam(int num, btScalar value, int axis)
{
if ((axis >= 0) && (axis < 3))
{
switch (num)
{
case BT_CONSTRAINT_STOP_ERP:
m_linearLimits.m_stopERP[axis] = value;
m_flags |= BT_6DOF_FLAGS_ERP_STOP2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2);
break;
case BT_CONSTRAINT_STOP_CFM:
m_linearLimits.m_stopCFM[axis] = value;
m_flags |= BT_6DOF_FLAGS_CFM_STOP2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2);
break;
case BT_CONSTRAINT_ERP:
m_linearLimits.m_motorERP[axis] = value;
m_flags |= BT_6DOF_FLAGS_ERP_MOTO2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2);
break;
case BT_CONSTRAINT_CFM:
m_linearLimits.m_motorCFM[axis] = value;
m_flags |= BT_6DOF_FLAGS_CFM_MOTO2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2);
break;
default:
btAssertConstrParams(0);
}
}
else if ((axis >= 3) && (axis < 6))
{
switch (num)
{
case BT_CONSTRAINT_STOP_ERP:
m_angularLimits[axis - 3].m_stopERP = value;
m_flags |= BT_6DOF_FLAGS_ERP_STOP2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2);
break;
case BT_CONSTRAINT_STOP_CFM:
m_angularLimits[axis - 3].m_stopCFM = value;
m_flags |= BT_6DOF_FLAGS_CFM_STOP2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2);
break;
case BT_CONSTRAINT_ERP:
m_angularLimits[axis - 3].m_motorERP = value;
m_flags |= BT_6DOF_FLAGS_ERP_MOTO2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2);
break;
case BT_CONSTRAINT_CFM:
m_angularLimits[axis - 3].m_motorCFM = value;
m_flags |= BT_6DOF_FLAGS_CFM_MOTO2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2);
break;
default:
btAssertConstrParams(0);
}
}
else
{
btAssertConstrParams(0);
}
}
//return the local value of parameter
btScalar btGeneric6DofSpring2Constraint::getParam(int num, int axis) const
{
btScalar retVal = 0;
if ((axis >= 0) && (axis < 3))
{
switch (num)
{
case BT_CONSTRAINT_STOP_ERP:
btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_STOP2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2)));
retVal = m_linearLimits.m_stopERP[axis];
break;
case BT_CONSTRAINT_STOP_CFM:
btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_STOP2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2)));
retVal = m_linearLimits.m_stopCFM[axis];
break;
case BT_CONSTRAINT_ERP:
btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_MOTO2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2)));
retVal = m_linearLimits.m_motorERP[axis];
break;
case BT_CONSTRAINT_CFM:
btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_MOTO2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2)));
retVal = m_linearLimits.m_motorCFM[axis];
break;
default:
btAssertConstrParams(0);
}
}
else if ((axis >= 3) && (axis < 6))
{
switch (num)
{
case BT_CONSTRAINT_STOP_ERP:
btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_STOP2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2)));
retVal = m_angularLimits[axis - 3].m_stopERP;
break;
case BT_CONSTRAINT_STOP_CFM:
btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_STOP2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2)));
retVal = m_angularLimits[axis - 3].m_stopCFM;
break;
case BT_CONSTRAINT_ERP:
btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_MOTO2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2)));
retVal = m_angularLimits[axis - 3].m_motorERP;
break;
case BT_CONSTRAINT_CFM:
btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_MOTO2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2)));
retVal = m_angularLimits[axis - 3].m_motorCFM;
break;
default:
btAssertConstrParams(0);
}
}
else
{
btAssertConstrParams(0);
}
return retVal;
}
void btGeneric6DofSpring2Constraint::setAxis(const btVector3& axis1, const btVector3& axis2)
{
btVector3 zAxis = axis1.normalized();
btVector3 yAxis = axis2.normalized();
btVector3 xAxis = yAxis.cross(zAxis); // we want right coordinate system
btTransform frameInW;
frameInW.setIdentity();
frameInW.getBasis().setValue(xAxis[0], yAxis[0], zAxis[0],
xAxis[1], yAxis[1], zAxis[1],
xAxis[2], yAxis[2], zAxis[2]);
// now get constraint frame in local coordinate systems
m_frameInA = m_rbA.getCenterOfMassTransform().inverse() * frameInW;
m_frameInB = m_rbB.getCenterOfMassTransform().inverse() * frameInW;
calculateTransforms();
}
void btGeneric6DofSpring2Constraint::setBounce(int index, btScalar bounce)
{
btAssert((index >= 0) && (index < 6));
if (index < 3)
m_linearLimits.m_bounce[index] = bounce;
else
m_angularLimits[index - 3].m_bounce = bounce;
}
void btGeneric6DofSpring2Constraint::enableMotor(int index, bool onOff)
{
btAssert((index >= 0) && (index < 6));
if (index < 3)
m_linearLimits.m_enableMotor[index] = onOff;
else
m_angularLimits[index - 3].m_enableMotor = onOff;
}
void btGeneric6DofSpring2Constraint::setServo(int index, bool onOff)
{
btAssert((index >= 0) && (index < 6));
if (index < 3)
m_linearLimits.m_servoMotor[index] = onOff;
else
m_angularLimits[index - 3].m_servoMotor = onOff;
}
void btGeneric6DofSpring2Constraint::setTargetVelocity(int index, btScalar velocity)
{
btAssert((index >= 0) && (index < 6));
if (index < 3)
m_linearLimits.m_targetVelocity[index] = velocity;
else
m_angularLimits[index - 3].m_targetVelocity = velocity;
}
void btGeneric6DofSpring2Constraint::setServoTarget(int index, btScalar targetOrg)
{
btAssert((index >= 0) && (index < 6));
if (index < 3)
{
m_linearLimits.m_servoTarget[index] = targetOrg;
}
else
{
//wrap between -PI and PI, see also
//https://stackoverflow.com/questions/4633177/c-how-to-wrap-a-float-to-the-interval-pi-pi
btScalar target = targetOrg + SIMD_PI;
if (1)
{
btScalar m = target - SIMD_2_PI * floor(target / SIMD_2_PI);
// handle boundary cases resulted from floating-point cut off:
{
if (m >= SIMD_2_PI)
{
target = 0;
}
else
{
if (m < 0)
{
if (SIMD_2_PI + m == SIMD_2_PI)
target = 0;
else
target = SIMD_2_PI + m;
}
else
{
target = m;
}
}
}
target -= SIMD_PI;
}
m_angularLimits[index - 3].m_servoTarget = target;
}
}
void btGeneric6DofSpring2Constraint::setMaxMotorForce(int index, btScalar force)
{
btAssert((index >= 0) && (index < 6));
if (index < 3)
m_linearLimits.m_maxMotorForce[index] = force;
else
m_angularLimits[index - 3].m_maxMotorForce = force;
}
void btGeneric6DofSpring2Constraint::enableSpring(int index, bool onOff)
{
btAssert((index >= 0) && (index < 6));
if (index < 3)
m_linearLimits.m_enableSpring[index] = onOff;
else
m_angularLimits[index - 3].m_enableSpring = onOff;
}
void btGeneric6DofSpring2Constraint::setStiffness(int index, btScalar stiffness, bool limitIfNeeded)
{
btAssert((index >= 0) && (index < 6));
if (index < 3)
{
m_linearLimits.m_springStiffness[index] = stiffness;
m_linearLimits.m_springStiffnessLimited[index] = limitIfNeeded;
}
else
{
m_angularLimits[index - 3].m_springStiffness = stiffness;
m_angularLimits[index - 3].m_springStiffnessLimited = limitIfNeeded;
}
}
void btGeneric6DofSpring2Constraint::setDamping(int index, btScalar damping, bool limitIfNeeded)
{
btAssert((index >= 0) && (index < 6));
if (index < 3)
{
m_linearLimits.m_springDamping[index] = damping;
m_linearLimits.m_springDampingLimited[index] = limitIfNeeded;
}
else
{
m_angularLimits[index - 3].m_springDamping = damping;
m_angularLimits[index - 3].m_springDampingLimited = limitIfNeeded;
}
}
void btGeneric6DofSpring2Constraint::setEquilibriumPoint()
{
calculateTransforms();
int i;
for (i = 0; i < 3; i++)
m_linearLimits.m_equilibriumPoint[i] = m_calculatedLinearDiff[i];
for (i = 0; i < 3; i++)
m_angularLimits[i].m_equilibriumPoint = m_calculatedAxisAngleDiff[i];
}
void btGeneric6DofSpring2Constraint::setEquilibriumPoint(int index)
{
btAssert((index >= 0) && (index < 6));
calculateTransforms();
if (index < 3)
m_linearLimits.m_equilibriumPoint[index] = m_calculatedLinearDiff[index];
else
m_angularLimits[index - 3].m_equilibriumPoint = m_calculatedAxisAngleDiff[index - 3];
}
void btGeneric6DofSpring2Constraint::setEquilibriumPoint(int index, btScalar val)
{
btAssert((index >= 0) && (index < 6));
if (index < 3)
m_linearLimits.m_equilibriumPoint[index] = val;
else
m_angularLimits[index - 3].m_equilibriumPoint = val;
}
//////////////////////////// btRotationalLimitMotor2 ////////////////////////////////////
void btRotationalLimitMotor2::testLimitValue(btScalar test_value)
{
//we can't normalize the angles here because we would lost the sign that we use later, but it doesn't seem to be a problem
if (m_loLimit > m_hiLimit)
{
m_currentLimit = 0;
m_currentLimitError = btScalar(0.f);
}
else if (m_loLimit == m_hiLimit)
{
m_currentLimitError = test_value - m_loLimit;
m_currentLimit = 3;
}
else
{
m_currentLimitError = test_value - m_loLimit;
m_currentLimitErrorHi = test_value - m_hiLimit;
m_currentLimit = 4;
}
}
//////////////////////////// btTranslationalLimitMotor2 ////////////////////////////////////
void btTranslationalLimitMotor2::testLimitValue(int limitIndex, btScalar test_value)
{
btScalar loLimit = m_lowerLimit[limitIndex];
btScalar hiLimit = m_upperLimit[limitIndex];
if (loLimit > hiLimit)
{
m_currentLimitError[limitIndex] = 0;
m_currentLimit[limitIndex] = 0;
}
else if (loLimit == hiLimit)
{
m_currentLimitError[limitIndex] = test_value - loLimit;
m_currentLimit[limitIndex] = 3;
}
else
{
m_currentLimitError[limitIndex] = test_value - loLimit;
m_currentLimitErrorHi[limitIndex] = test_value - hiLimit;
m_currentLimit[limitIndex] = 4;
}
}
|