summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.cpp
blob: fa17254ec3f2c488774822149b32f9cd03f73bf6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
/*
2007-09-09
Refactored by Francisco Le?n
email: projectileman@yahoo.com
http://gimpact.sf.net
*/

#include "btGeneric6DofConstraint.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include "LinearMath/btTransformUtil.h"
#include "LinearMath/btTransformUtil.h"
#include <new>



#define D6_USE_OBSOLETE_METHOD false
#define D6_USE_FRAME_OFFSET true






btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA)
: btTypedConstraint(D6_CONSTRAINT_TYPE, rbA, rbB)
, m_frameInA(frameInA)
, m_frameInB(frameInB),
m_useLinearReferenceFrameA(useLinearReferenceFrameA),
m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET),
m_flags(0),
m_useSolveConstraintObsolete(D6_USE_OBSOLETE_METHOD)
{
	calculateTransforms();
}



btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameB)
        : btTypedConstraint(D6_CONSTRAINT_TYPE, getFixedBody(), rbB),
		m_frameInB(frameInB),
		m_useLinearReferenceFrameA(useLinearReferenceFrameB),
		m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET),
		m_flags(0),
		m_useSolveConstraintObsolete(false)
{
	///not providing rigidbody A means implicitly using worldspace for body A
	m_frameInA = rbB.getCenterOfMassTransform() * m_frameInB;
	calculateTransforms();
}




#define GENERIC_D6_DISABLE_WARMSTARTING 1



btScalar btGetMatrixElem(const btMatrix3x3& mat, int index);
btScalar btGetMatrixElem(const btMatrix3x3& mat, int index)
{
	int i = index%3;
	int j = index/3;
	return mat[i][j];
}



///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html
bool	matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz);
bool	matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz)
{
	//	// rot =  cy*cz          -cy*sz           sy
	//	//        cz*sx*sy+cx*sz  cx*cz-sx*sy*sz -cy*sx
	//	//       -cx*cz*sy+sx*sz  cz*sx+cx*sy*sz  cx*cy
	//

	btScalar fi = btGetMatrixElem(mat,2);
	if (fi < btScalar(1.0f))
	{
		if (fi > btScalar(-1.0f))
		{
			xyz[0] = btAtan2(-btGetMatrixElem(mat,5),btGetMatrixElem(mat,8));
			xyz[1] = btAsin(btGetMatrixElem(mat,2));
			xyz[2] = btAtan2(-btGetMatrixElem(mat,1),btGetMatrixElem(mat,0));
			return true;
		}
		else
		{
			// WARNING.  Not unique.  XA - ZA = -atan2(r10,r11)
			xyz[0] = -btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4));
			xyz[1] = -SIMD_HALF_PI;
			xyz[2] = btScalar(0.0);
			return false;
		}
	}
	else
	{
		// WARNING.  Not unique.  XAngle + ZAngle = atan2(r10,r11)
		xyz[0] = btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4));
		xyz[1] = SIMD_HALF_PI;
		xyz[2] = 0.0;
	}
	return false;
}

//////////////////////////// btRotationalLimitMotor ////////////////////////////////////

int btRotationalLimitMotor::testLimitValue(btScalar test_value)
{
	if(m_loLimit>m_hiLimit)
	{
		m_currentLimit = 0;//Free from violation
		return 0;
	}
	if (test_value < m_loLimit)
	{
		m_currentLimit = 1;//low limit violation
		m_currentLimitError =  test_value - m_loLimit;
		if(m_currentLimitError>SIMD_PI) 
			m_currentLimitError-=SIMD_2_PI;
		else if(m_currentLimitError<-SIMD_PI) 
			m_currentLimitError+=SIMD_2_PI;
		return 1;
	}
	else if (test_value> m_hiLimit)
	{
		m_currentLimit = 2;//High limit violation
		m_currentLimitError = test_value - m_hiLimit;
		if(m_currentLimitError>SIMD_PI) 
			m_currentLimitError-=SIMD_2_PI;
		else if(m_currentLimitError<-SIMD_PI) 
			m_currentLimitError+=SIMD_2_PI;
		return 2;
	};

	m_currentLimit = 0;//Free from violation
	return 0;

}



btScalar btRotationalLimitMotor::solveAngularLimits(
	btScalar timeStep,btVector3& axis,btScalar jacDiagABInv,
	btRigidBody * body0, btRigidBody * body1 )
{
	if (needApplyTorques()==false) return 0.0f;

	btScalar target_velocity = m_targetVelocity;
	btScalar maxMotorForce = m_maxMotorForce;

	//current error correction
	if (m_currentLimit!=0)
	{
		target_velocity = -m_stopERP*m_currentLimitError/(timeStep);
		maxMotorForce = m_maxLimitForce;
	}

	maxMotorForce *= timeStep;

	// current velocity difference

	btVector3 angVelA = body0->getAngularVelocity();
	btVector3 angVelB = body1->getAngularVelocity();

	btVector3 vel_diff;
	vel_diff = angVelA-angVelB;



	btScalar rel_vel = axis.dot(vel_diff);

	// correction velocity
	btScalar motor_relvel = m_limitSoftness*(target_velocity  - m_damping*rel_vel);


	if ( motor_relvel < SIMD_EPSILON && motor_relvel > -SIMD_EPSILON  )
	{
		return 0.0f;//no need for applying force
	}


	// correction impulse
	btScalar unclippedMotorImpulse = (1+m_bounce)*motor_relvel*jacDiagABInv;

	// clip correction impulse
	btScalar clippedMotorImpulse;

	///@todo: should clip against accumulated impulse
	if (unclippedMotorImpulse>0.0f)
	{
		clippedMotorImpulse =  unclippedMotorImpulse > maxMotorForce? maxMotorForce: unclippedMotorImpulse;
	}
	else
	{
		clippedMotorImpulse =  unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce: unclippedMotorImpulse;
	}


	// sort with accumulated impulses
	btScalar	lo = btScalar(-BT_LARGE_FLOAT);
	btScalar	hi = btScalar(BT_LARGE_FLOAT);

	btScalar oldaccumImpulse = m_accumulatedImpulse;
	btScalar sum = oldaccumImpulse + clippedMotorImpulse;
	m_accumulatedImpulse = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;

	clippedMotorImpulse = m_accumulatedImpulse - oldaccumImpulse;

	btVector3 motorImp = clippedMotorImpulse * axis;

	body0->applyTorqueImpulse(motorImp);
	body1->applyTorqueImpulse(-motorImp);

	return clippedMotorImpulse;


}

//////////////////////////// End btRotationalLimitMotor ////////////////////////////////////




//////////////////////////// btTranslationalLimitMotor ////////////////////////////////////


int btTranslationalLimitMotor::testLimitValue(int limitIndex, btScalar test_value)
{
	btScalar loLimit = m_lowerLimit[limitIndex];
	btScalar hiLimit = m_upperLimit[limitIndex];
	if(loLimit > hiLimit)
	{
		m_currentLimit[limitIndex] = 0;//Free from violation
		m_currentLimitError[limitIndex] = btScalar(0.f);
		return 0;
	}

	if (test_value < loLimit)
	{
		m_currentLimit[limitIndex] = 2;//low limit violation
		m_currentLimitError[limitIndex] =  test_value - loLimit;
		return 2;
	}
	else if (test_value> hiLimit)
	{
		m_currentLimit[limitIndex] = 1;//High limit violation
		m_currentLimitError[limitIndex] = test_value - hiLimit;
		return 1;
	};

	m_currentLimit[limitIndex] = 0;//Free from violation
	m_currentLimitError[limitIndex] = btScalar(0.f);
	return 0;
}



btScalar btTranslationalLimitMotor::solveLinearAxis(
	btScalar timeStep,
	btScalar jacDiagABInv,
	btRigidBody& body1,const btVector3 &pointInA,
	btRigidBody& body2,const btVector3 &pointInB,
	int limit_index,
	const btVector3 & axis_normal_on_a,
	const btVector3 & anchorPos)
{

	///find relative velocity
	//    btVector3 rel_pos1 = pointInA - body1.getCenterOfMassPosition();
	//    btVector3 rel_pos2 = pointInB - body2.getCenterOfMassPosition();
	btVector3 rel_pos1 = anchorPos - body1.getCenterOfMassPosition();
	btVector3 rel_pos2 = anchorPos - body2.getCenterOfMassPosition();

	btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
	btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
	btVector3 vel = vel1 - vel2;

	btScalar rel_vel = axis_normal_on_a.dot(vel);



	/// apply displacement correction

	//positional error (zeroth order error)
	btScalar depth = -(pointInA - pointInB).dot(axis_normal_on_a);
	btScalar	lo = btScalar(-BT_LARGE_FLOAT);
	btScalar	hi = btScalar(BT_LARGE_FLOAT);

	btScalar minLimit = m_lowerLimit[limit_index];
	btScalar maxLimit = m_upperLimit[limit_index];

	//handle the limits
	if (minLimit < maxLimit)
	{
		{
			if (depth > maxLimit)
			{
				depth -= maxLimit;
				lo = btScalar(0.);

			}
			else
			{
				if (depth < minLimit)
				{
					depth -= minLimit;
					hi = btScalar(0.);
				}
				else
				{
					return 0.0f;
				}
			}
		}
	}

	btScalar normalImpulse= m_limitSoftness*(m_restitution*depth/timeStep - m_damping*rel_vel) * jacDiagABInv;




	btScalar oldNormalImpulse = m_accumulatedImpulse[limit_index];
	btScalar sum = oldNormalImpulse + normalImpulse;
	m_accumulatedImpulse[limit_index] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
	normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse;

	btVector3 impulse_vector = axis_normal_on_a * normalImpulse;
	body1.applyImpulse( impulse_vector, rel_pos1);
	body2.applyImpulse(-impulse_vector, rel_pos2);

	

	return normalImpulse;
}

//////////////////////////// btTranslationalLimitMotor ////////////////////////////////////

void btGeneric6DofConstraint::calculateAngleInfo()
{
	btMatrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse()*m_calculatedTransformB.getBasis();
	matrixToEulerXYZ(relative_frame,m_calculatedAxisAngleDiff);
	// in euler angle mode we do not actually constrain the angular velocity
	// along the axes axis[0] and axis[2] (although we do use axis[1]) :
	//
	//    to get			constrain w2-w1 along		...not
	//    ------			---------------------		------
	//    d(angle[0])/dt = 0	ax[1] x ax[2]			ax[0]
	//    d(angle[1])/dt = 0	ax[1]
	//    d(angle[2])/dt = 0	ax[0] x ax[1]			ax[2]
	//
	// constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0.
	// to prove the result for angle[0], write the expression for angle[0] from
	// GetInfo1 then take the derivative. to prove this for angle[2] it is
	// easier to take the euler rate expression for d(angle[2])/dt with respect
	// to the components of w and set that to 0.
	btVector3 axis0 = m_calculatedTransformB.getBasis().getColumn(0);
	btVector3 axis2 = m_calculatedTransformA.getBasis().getColumn(2);

	m_calculatedAxis[1] = axis2.cross(axis0);
	m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2);
	m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]);

	m_calculatedAxis[0].normalize();
	m_calculatedAxis[1].normalize();
	m_calculatedAxis[2].normalize();

}

void btGeneric6DofConstraint::calculateTransforms()
{
	calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
}

void btGeneric6DofConstraint::calculateTransforms(const btTransform& transA,const btTransform& transB)
{
	m_calculatedTransformA = transA * m_frameInA;
	m_calculatedTransformB = transB * m_frameInB;
	calculateLinearInfo();
	calculateAngleInfo();
	if(m_useOffsetForConstraintFrame)
	{	//  get weight factors depending on masses
		btScalar miA = getRigidBodyA().getInvMass();
		btScalar miB = getRigidBodyB().getInvMass();
		m_hasStaticBody = (miA < SIMD_EPSILON) || (miB < SIMD_EPSILON);
		btScalar miS = miA + miB;
		if(miS > btScalar(0.f))
		{
			m_factA = miB / miS;
		}
		else 
		{
			m_factA = btScalar(0.5f);
		}
		m_factB = btScalar(1.0f) - m_factA;
	}
}



void btGeneric6DofConstraint::buildLinearJacobian(
	btJacobianEntry & jacLinear,const btVector3 & normalWorld,
	const btVector3 & pivotAInW,const btVector3 & pivotBInW)
{
	new (&jacLinear) btJacobianEntry(
        m_rbA.getCenterOfMassTransform().getBasis().transpose(),
        m_rbB.getCenterOfMassTransform().getBasis().transpose(),
        pivotAInW - m_rbA.getCenterOfMassPosition(),
        pivotBInW - m_rbB.getCenterOfMassPosition(),
        normalWorld,
        m_rbA.getInvInertiaDiagLocal(),
        m_rbA.getInvMass(),
        m_rbB.getInvInertiaDiagLocal(),
        m_rbB.getInvMass());
}



void btGeneric6DofConstraint::buildAngularJacobian(
	btJacobianEntry & jacAngular,const btVector3 & jointAxisW)
{
	 new (&jacAngular)	btJacobianEntry(jointAxisW,
                                      m_rbA.getCenterOfMassTransform().getBasis().transpose(),
                                      m_rbB.getCenterOfMassTransform().getBasis().transpose(),
                                      m_rbA.getInvInertiaDiagLocal(),
                                      m_rbB.getInvInertiaDiagLocal());

}



bool btGeneric6DofConstraint::testAngularLimitMotor(int axis_index)
{
	btScalar angle = m_calculatedAxisAngleDiff[axis_index];
	angle = btAdjustAngleToLimits(angle, m_angularLimits[axis_index].m_loLimit, m_angularLimits[axis_index].m_hiLimit);
	m_angularLimits[axis_index].m_currentPosition = angle;
	//test limits
	m_angularLimits[axis_index].testLimitValue(angle);
	return m_angularLimits[axis_index].needApplyTorques();
}



void btGeneric6DofConstraint::buildJacobian()
{
#ifndef __SPU__
	if (m_useSolveConstraintObsolete)
	{

		// Clear accumulated impulses for the next simulation step
		m_linearLimits.m_accumulatedImpulse.setValue(btScalar(0.), btScalar(0.), btScalar(0.));
		int i;
		for(i = 0; i < 3; i++)
		{
			m_angularLimits[i].m_accumulatedImpulse = btScalar(0.);
		}
		//calculates transform
		calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());

		//  const btVector3& pivotAInW = m_calculatedTransformA.getOrigin();
		//  const btVector3& pivotBInW = m_calculatedTransformB.getOrigin();
		calcAnchorPos();
		btVector3 pivotAInW = m_AnchorPos;
		btVector3 pivotBInW = m_AnchorPos;

		// not used here
		//    btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
		//    btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();

		btVector3 normalWorld;
		//linear part
		for (i=0;i<3;i++)
		{
			if (m_linearLimits.isLimited(i))
			{
				if (m_useLinearReferenceFrameA)
					normalWorld = m_calculatedTransformA.getBasis().getColumn(i);
				else
					normalWorld = m_calculatedTransformB.getBasis().getColumn(i);

				buildLinearJacobian(
					m_jacLinear[i],normalWorld ,
					pivotAInW,pivotBInW);

			}
		}

		// angular part
		for (i=0;i<3;i++)
		{
			//calculates error angle
			if (testAngularLimitMotor(i))
			{
				normalWorld = this->getAxis(i);
				// Create angular atom
				buildAngularJacobian(m_jacAng[i],normalWorld);
			}
		}

	}
#endif //__SPU__

}


void btGeneric6DofConstraint::getInfo1 (btConstraintInfo1* info)
{
	if (m_useSolveConstraintObsolete)
	{
		info->m_numConstraintRows = 0;
		info->nub = 0;
	} else
	{
		//prepare constraint
		calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
		info->m_numConstraintRows = 0;
		info->nub = 6;
		int i;
		//test linear limits
		for(i = 0; i < 3; i++)
		{
			if(m_linearLimits.needApplyForce(i))
			{
				info->m_numConstraintRows++;
				info->nub--;
			}
		}
		//test angular limits
		for (i=0;i<3 ;i++ )
		{
			if(testAngularLimitMotor(i))
			{
				info->m_numConstraintRows++;
				info->nub--;
			}
		}
	}
}

void btGeneric6DofConstraint::getInfo1NonVirtual (btConstraintInfo1* info)
{
	if (m_useSolveConstraintObsolete)
	{
		info->m_numConstraintRows = 0;
		info->nub = 0;
	} else
	{
		//pre-allocate all 6
		info->m_numConstraintRows = 6;
		info->nub = 0;
	}
}


void btGeneric6DofConstraint::getInfo2 (btConstraintInfo2* info)
{
	btAssert(!m_useSolveConstraintObsolete);

	const btTransform& transA = m_rbA.getCenterOfMassTransform();
	const btTransform& transB = m_rbB.getCenterOfMassTransform();
	const btVector3& linVelA = m_rbA.getLinearVelocity();
	const btVector3& linVelB = m_rbB.getLinearVelocity();
	const btVector3& angVelA = m_rbA.getAngularVelocity();
	const btVector3& angVelB = m_rbB.getAngularVelocity();

	if(m_useOffsetForConstraintFrame)
	{ // for stability better to solve angular limits first
		int row = setAngularLimits(info, 0,transA,transB,linVelA,linVelB,angVelA,angVelB);
		setLinearLimits(info, row, transA,transB,linVelA,linVelB,angVelA,angVelB);
	}
	else
	{ // leave old version for compatibility
		int row = setLinearLimits(info, 0, transA,transB,linVelA,linVelB,angVelA,angVelB);
		setAngularLimits(info, row,transA,transB,linVelA,linVelB,angVelA,angVelB);
	}

}


void btGeneric6DofConstraint::getInfo2NonVirtual (btConstraintInfo2* info, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB)
{
	
	btAssert(!m_useSolveConstraintObsolete);
	//prepare constraint
	calculateTransforms(transA,transB);

	int i;
	for (i=0;i<3 ;i++ )
	{
		testAngularLimitMotor(i);
	}

	if(m_useOffsetForConstraintFrame)
	{ // for stability better to solve angular limits first
		int row = setAngularLimits(info, 0,transA,transB,linVelA,linVelB,angVelA,angVelB);
		setLinearLimits(info, row, transA,transB,linVelA,linVelB,angVelA,angVelB);
	}
	else
	{ // leave old version for compatibility
		int row = setLinearLimits(info, 0, transA,transB,linVelA,linVelB,angVelA,angVelB);
		setAngularLimits(info, row,transA,transB,linVelA,linVelB,angVelA,angVelB);
	}
}



int btGeneric6DofConstraint::setLinearLimits(btConstraintInfo2* info, int row, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB)
{
//	int row = 0;
	//solve linear limits
	btRotationalLimitMotor limot;
	for (int i=0;i<3 ;i++ )
	{
		if(m_linearLimits.needApplyForce(i))
		{ // re-use rotational motor code
			limot.m_bounce = btScalar(0.f);
			limot.m_currentLimit = m_linearLimits.m_currentLimit[i];
			limot.m_currentPosition = m_linearLimits.m_currentLinearDiff[i];
			limot.m_currentLimitError  = m_linearLimits.m_currentLimitError[i];
			limot.m_damping  = m_linearLimits.m_damping;
			limot.m_enableMotor  = m_linearLimits.m_enableMotor[i];
			limot.m_hiLimit  = m_linearLimits.m_upperLimit[i];
			limot.m_limitSoftness  = m_linearLimits.m_limitSoftness;
			limot.m_loLimit  = m_linearLimits.m_lowerLimit[i];
			limot.m_maxLimitForce  = btScalar(0.f);
			limot.m_maxMotorForce  = m_linearLimits.m_maxMotorForce[i];
			limot.m_targetVelocity  = m_linearLimits.m_targetVelocity[i];
			btVector3 axis = m_calculatedTransformA.getBasis().getColumn(i);
			int flags = m_flags >> (i * BT_6DOF_FLAGS_AXIS_SHIFT);
			limot.m_normalCFM	= (flags & BT_6DOF_FLAGS_CFM_NORM) ? m_linearLimits.m_normalCFM[i] : info->cfm[0];
			limot.m_stopCFM		= (flags & BT_6DOF_FLAGS_CFM_STOP) ? m_linearLimits.m_stopCFM[i] : info->cfm[0];
			limot.m_stopERP		= (flags & BT_6DOF_FLAGS_ERP_STOP) ? m_linearLimits.m_stopERP[i] : info->erp;
			if(m_useOffsetForConstraintFrame)
			{
				int indx1 = (i + 1) % 3;
				int indx2 = (i + 2) % 3;
				int rotAllowed = 1; // rotations around orthos to current axis
				if(m_angularLimits[indx1].m_currentLimit && m_angularLimits[indx2].m_currentLimit)
				{
					rotAllowed = 0;
				}
				row += get_limit_motor_info2(&limot, transA,transB,linVelA,linVelB,angVelA,angVelB, info, row, axis, 0, rotAllowed);
			}
			else
			{
				row += get_limit_motor_info2(&limot, transA,transB,linVelA,linVelB,angVelA,angVelB, info, row, axis, 0);
			}
		}
	}
	return row;
}



int btGeneric6DofConstraint::setAngularLimits(btConstraintInfo2 *info, int row_offset, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB)
{
	btGeneric6DofConstraint * d6constraint = this;
	int row = row_offset;
	//solve angular limits
	for (int i=0;i<3 ;i++ )
	{
		if(d6constraint->getRotationalLimitMotor(i)->needApplyTorques())
		{
			btVector3 axis = d6constraint->getAxis(i);
			int flags = m_flags >> ((i + 3) * BT_6DOF_FLAGS_AXIS_SHIFT);
			if(!(flags & BT_6DOF_FLAGS_CFM_NORM))
			{
				m_angularLimits[i].m_normalCFM = info->cfm[0];
			}
			if(!(flags & BT_6DOF_FLAGS_CFM_STOP))
			{
				m_angularLimits[i].m_stopCFM = info->cfm[0];
			}
			if(!(flags & BT_6DOF_FLAGS_ERP_STOP))
			{
				m_angularLimits[i].m_stopERP = info->erp;
			}
			row += get_limit_motor_info2(d6constraint->getRotationalLimitMotor(i),
												transA,transB,linVelA,linVelB,angVelA,angVelB, info,row,axis,1);
		}
	}

	return row;
}




void	btGeneric6DofConstraint::updateRHS(btScalar	timeStep)
{
	(void)timeStep;

}


void btGeneric6DofConstraint::setFrames(const btTransform& frameA, const btTransform& frameB)
{
	m_frameInA = frameA;
	m_frameInB = frameB;
	buildJacobian();
	calculateTransforms();
}



btVector3 btGeneric6DofConstraint::getAxis(int axis_index) const
{
	return m_calculatedAxis[axis_index];
}


btScalar	btGeneric6DofConstraint::getRelativePivotPosition(int axisIndex) const
{
	return m_calculatedLinearDiff[axisIndex];
}


btScalar btGeneric6DofConstraint::getAngle(int axisIndex) const
{
	return m_calculatedAxisAngleDiff[axisIndex];
}



void btGeneric6DofConstraint::calcAnchorPos(void)
{
	btScalar imA = m_rbA.getInvMass();
	btScalar imB = m_rbB.getInvMass();
	btScalar weight;
	if(imB == btScalar(0.0))
	{
		weight = btScalar(1.0);
	}
	else
	{
		weight = imA / (imA + imB);
	}
	const btVector3& pA = m_calculatedTransformA.getOrigin();
	const btVector3& pB = m_calculatedTransformB.getOrigin();
	m_AnchorPos = pA * weight + pB * (btScalar(1.0) - weight);
	return;
}



void btGeneric6DofConstraint::calculateLinearInfo()
{
	m_calculatedLinearDiff = m_calculatedTransformB.getOrigin() - m_calculatedTransformA.getOrigin();
	m_calculatedLinearDiff = m_calculatedTransformA.getBasis().inverse() * m_calculatedLinearDiff;
	for(int i = 0; i < 3; i++)
	{
		m_linearLimits.m_currentLinearDiff[i] = m_calculatedLinearDiff[i];
		m_linearLimits.testLimitValue(i, m_calculatedLinearDiff[i]);
	}
}



int btGeneric6DofConstraint::get_limit_motor_info2(
	btRotationalLimitMotor * limot,
	const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB,
	btConstraintInfo2 *info, int row, btVector3& ax1, int rotational,int rotAllowed)
{
    int srow = row * info->rowskip;
    bool powered = limot->m_enableMotor;
    int limit = limot->m_currentLimit;
    if (powered || limit)
    {   // if the joint is powered, or has joint limits, add in the extra row
        btScalar *J1 = rotational ? info->m_J1angularAxis : info->m_J1linearAxis;
        btScalar *J2 = rotational ? info->m_J2angularAxis : info->m_J2linearAxis;
        J1[srow+0] = ax1[0];
        J1[srow+1] = ax1[1];
        J1[srow+2] = ax1[2];

        J2[srow+0] = -ax1[0];
        J2[srow+1] = -ax1[1];
        J2[srow+2] = -ax1[2];

		if((!rotational))
        {
			if (m_useOffsetForConstraintFrame)
			{
				btVector3 tmpA, tmpB, relA, relB;
				// get vector from bodyB to frameB in WCS
				relB = m_calculatedTransformB.getOrigin() - transB.getOrigin();
				// get its projection to constraint axis
				btVector3 projB = ax1 * relB.dot(ax1);
				// get vector directed from bodyB to constraint axis (and orthogonal to it)
				btVector3 orthoB = relB - projB;
				// same for bodyA
				relA = m_calculatedTransformA.getOrigin() - transA.getOrigin();
				btVector3 projA = ax1 * relA.dot(ax1);
				btVector3 orthoA = relA - projA;
				// get desired offset between frames A and B along constraint axis
				btScalar desiredOffs = limot->m_currentPosition - limot->m_currentLimitError;
				// desired vector from projection of center of bodyA to projection of center of bodyB to constraint axis
				btVector3 totalDist = projA + ax1 * desiredOffs - projB;
				// get offset vectors relA and relB
				relA = orthoA + totalDist * m_factA;
				relB = orthoB - totalDist * m_factB;
				tmpA = relA.cross(ax1);
				tmpB = relB.cross(ax1);
				if(m_hasStaticBody && (!rotAllowed))
				{
					tmpA *= m_factA;
					tmpB *= m_factB;
				}
				int i;
				for (i=0; i<3; i++) info->m_J1angularAxis[srow+i] = tmpA[i];
				for (i=0; i<3; i++) info->m_J2angularAxis[srow+i] = -tmpB[i];
			} else
			{
				btVector3 ltd;	// Linear Torque Decoupling vector
				btVector3 c = m_calculatedTransformB.getOrigin() - transA.getOrigin();
				ltd = c.cross(ax1);
				info->m_J1angularAxis[srow+0] = ltd[0];
				info->m_J1angularAxis[srow+1] = ltd[1];
				info->m_J1angularAxis[srow+2] = ltd[2];

				c = m_calculatedTransformB.getOrigin() - transB.getOrigin();
				ltd = -c.cross(ax1);
				info->m_J2angularAxis[srow+0] = ltd[0];
				info->m_J2angularAxis[srow+1] = ltd[1];
				info->m_J2angularAxis[srow+2] = ltd[2];
			}
        }
        // if we're limited low and high simultaneously, the joint motor is
        // ineffective
        if (limit && (limot->m_loLimit == limot->m_hiLimit)) powered = false;
        info->m_constraintError[srow] = btScalar(0.f);
        if (powered)
        {
			info->cfm[srow] = limot->m_normalCFM;
            if(!limit)
            {
				btScalar tag_vel = rotational ? limot->m_targetVelocity : -limot->m_targetVelocity;

				btScalar mot_fact = getMotorFactor(	limot->m_currentPosition, 
													limot->m_loLimit,
													limot->m_hiLimit, 
													tag_vel, 
													info->fps * limot->m_stopERP);
				info->m_constraintError[srow] += mot_fact * limot->m_targetVelocity;
                info->m_lowerLimit[srow] = -limot->m_maxMotorForce;
                info->m_upperLimit[srow] = limot->m_maxMotorForce;
            }
        }
        if(limit)
        {
            btScalar k = info->fps * limot->m_stopERP;
			if(!rotational)
			{
				info->m_constraintError[srow] += k * limot->m_currentLimitError;
			}
			else
			{
				info->m_constraintError[srow] += -k * limot->m_currentLimitError;
			}
			info->cfm[srow] = limot->m_stopCFM;
            if (limot->m_loLimit == limot->m_hiLimit)
            {   // limited low and high simultaneously
                info->m_lowerLimit[srow] = -SIMD_INFINITY;
                info->m_upperLimit[srow] = SIMD_INFINITY;
            }
            else
            {
                if (limit == 1)
                {
                    info->m_lowerLimit[srow] = 0;
                    info->m_upperLimit[srow] = SIMD_INFINITY;
                }
                else
                {
                    info->m_lowerLimit[srow] = -SIMD_INFINITY;
                    info->m_upperLimit[srow] = 0;
                }
                // deal with bounce
                if (limot->m_bounce > 0)
                {
                    // calculate joint velocity
                    btScalar vel;
                    if (rotational)
                    {
                        vel = angVelA.dot(ax1);
//make sure that if no body -> angVelB == zero vec
//                        if (body1)
                            vel -= angVelB.dot(ax1);
                    }
                    else
                    {
                        vel = linVelA.dot(ax1);
//make sure that if no body -> angVelB == zero vec
//                        if (body1)
                            vel -= linVelB.dot(ax1);
                    }
                    // only apply bounce if the velocity is incoming, and if the
                    // resulting c[] exceeds what we already have.
                    if (limit == 1)
                    {
                        if (vel < 0)
                        {
                            btScalar newc = -limot->m_bounce* vel;
                            if (newc > info->m_constraintError[srow]) 
								info->m_constraintError[srow] = newc;
                        }
                    }
                    else
                    {
                        if (vel > 0)
                        {
                            btScalar newc = -limot->m_bounce * vel;
                            if (newc < info->m_constraintError[srow]) 
								info->m_constraintError[srow] = newc;
                        }
                    }
                }
            }
        }
        return 1;
    }
    else return 0;
}






	///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). 
	///If no axis is provided, it uses the default axis for this constraint.
void btGeneric6DofConstraint::setParam(int num, btScalar value, int axis)
{
	if((axis >= 0) && (axis < 3))
	{
		switch(num)
		{
			case BT_CONSTRAINT_STOP_ERP : 
				m_linearLimits.m_stopERP[axis] = value;
				m_flags |= BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
				break;
			case BT_CONSTRAINT_STOP_CFM : 
				m_linearLimits.m_stopCFM[axis] = value;
				m_flags |= BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
				break;
			case BT_CONSTRAINT_CFM : 
				m_linearLimits.m_normalCFM[axis] = value;
				m_flags |= BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
				break;
			default : 
				btAssertConstrParams(0);
		}
	}
	else if((axis >=3) && (axis < 6))
	{
		switch(num)
		{
			case BT_CONSTRAINT_STOP_ERP : 
				m_angularLimits[axis - 3].m_stopERP = value;
				m_flags |= BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
				break;
			case BT_CONSTRAINT_STOP_CFM : 
				m_angularLimits[axis - 3].m_stopCFM = value;
				m_flags |= BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
				break;
			case BT_CONSTRAINT_CFM : 
				m_angularLimits[axis - 3].m_normalCFM = value;
				m_flags |= BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
				break;
			default : 
				btAssertConstrParams(0);
		}
	}
	else
	{
		btAssertConstrParams(0);
	}
}

	///return the local value of parameter
btScalar btGeneric6DofConstraint::getParam(int num, int axis) const 
{
	btScalar retVal = 0;
	if((axis >= 0) && (axis < 3))
	{
		switch(num)
		{
			case BT_CONSTRAINT_STOP_ERP : 
				btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
				retVal = m_linearLimits.m_stopERP[axis];
				break;
			case BT_CONSTRAINT_STOP_CFM : 
				btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
				retVal = m_linearLimits.m_stopCFM[axis];
				break;
			case BT_CONSTRAINT_CFM : 
				btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
				retVal = m_linearLimits.m_normalCFM[axis];
				break;
			default : 
				btAssertConstrParams(0);
		}
	}
	else if((axis >=3) && (axis < 6))
	{
		switch(num)
		{
			case BT_CONSTRAINT_STOP_ERP : 
				btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
				retVal = m_angularLimits[axis - 3].m_stopERP;
				break;
			case BT_CONSTRAINT_STOP_CFM : 
				btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
				retVal = m_angularLimits[axis - 3].m_stopCFM;
				break;
			case BT_CONSTRAINT_CFM : 
				btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
				retVal = m_angularLimits[axis - 3].m_normalCFM;
				break;
			default : 
				btAssertConstrParams(0);
		}
	}
	else
	{
		btAssertConstrParams(0);
	}
	return retVal;
}

 

void btGeneric6DofConstraint::setAxis(const btVector3& axis1,const btVector3& axis2)
{
	btVector3 zAxis = axis1.normalized();
	btVector3 yAxis = axis2.normalized();
	btVector3 xAxis = yAxis.cross(zAxis); // we want right coordinate system
	
	btTransform frameInW;
	frameInW.setIdentity();
	frameInW.getBasis().setValue(	xAxis[0], yAxis[0], zAxis[0],	
	                                xAxis[1], yAxis[1], zAxis[1],
	                               xAxis[2], yAxis[2], zAxis[2]);
	
	// now get constraint frame in local coordinate systems
	m_frameInA = m_rbA.getCenterOfMassTransform().inverse() * frameInW;
	m_frameInB = m_rbB.getCenterOfMassTransform().inverse() * frameInW;
	
	calculateTransforms();
}