1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
|
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btBatchedConstraints.h"
#include "LinearMath/btIDebugDraw.h"
#include "LinearMath/btMinMax.h"
#include "LinearMath/btStackAlloc.h"
#include "LinearMath/btQuickprof.h"
#include <string.h> //for memset
#include <cmath>
const int kNoMerge = -1;
bool btBatchedConstraints::s_debugDrawBatches = false;
struct btBatchedConstraintInfo
{
int constraintIndex;
int numConstraintRows;
int bodyIds[2];
};
struct btBatchInfo
{
int numConstraints;
int mergeIndex;
btBatchInfo() : numConstraints(0), mergeIndex(kNoMerge) {}
};
bool btBatchedConstraints::validate(btConstraintArray* constraints, const btAlignedObjectArray<btSolverBody>& bodies) const
{
//
// validate: for debugging only. Verify coloring of bodies, that no body is touched by more than one batch in any given phase
//
int errors = 0;
const int kUnassignedBatch = -1;
btAlignedObjectArray<int> bodyBatchId;
for (int iPhase = 0; iPhase < m_phases.size(); ++iPhase)
{
bodyBatchId.resizeNoInitialize(0);
bodyBatchId.resize(bodies.size(), kUnassignedBatch);
const Range& phase = m_phases[iPhase];
for (int iBatch = phase.begin; iBatch < phase.end; ++iBatch)
{
const Range& batch = m_batches[iBatch];
for (int iiCons = batch.begin; iiCons < batch.end; ++iiCons)
{
int iCons = m_constraintIndices[iiCons];
const btSolverConstraint& cons = constraints->at(iCons);
const btSolverBody& bodyA = bodies[cons.m_solverBodyIdA];
const btSolverBody& bodyB = bodies[cons.m_solverBodyIdB];
if (!bodyA.internalGetInvMass().isZero())
{
int thisBodyBatchId = bodyBatchId[cons.m_solverBodyIdA];
if (thisBodyBatchId == kUnassignedBatch)
{
bodyBatchId[cons.m_solverBodyIdA] = iBatch;
}
else if (thisBodyBatchId != iBatch)
{
btAssert(!"dynamic body is used in 2 different batches in the same phase");
errors++;
}
}
if (!bodyB.internalGetInvMass().isZero())
{
int thisBodyBatchId = bodyBatchId[cons.m_solverBodyIdB];
if (thisBodyBatchId == kUnassignedBatch)
{
bodyBatchId[cons.m_solverBodyIdB] = iBatch;
}
else if (thisBodyBatchId != iBatch)
{
btAssert(!"dynamic body is used in 2 different batches in the same phase");
errors++;
}
}
}
}
}
return errors == 0;
}
static void debugDrawSingleBatch(const btBatchedConstraints* bc,
btConstraintArray* constraints,
const btAlignedObjectArray<btSolverBody>& bodies,
int iBatch,
const btVector3& color,
const btVector3& offset)
{
if (bc && bc->m_debugDrawer && iBatch < bc->m_batches.size())
{
const btBatchedConstraints::Range& b = bc->m_batches[iBatch];
for (int iiCon = b.begin; iiCon < b.end; ++iiCon)
{
int iCon = bc->m_constraintIndices[iiCon];
const btSolverConstraint& con = constraints->at(iCon);
int iBody0 = con.m_solverBodyIdA;
int iBody1 = con.m_solverBodyIdB;
btVector3 pos0 = bodies[iBody0].getWorldTransform().getOrigin() + offset;
btVector3 pos1 = bodies[iBody1].getWorldTransform().getOrigin() + offset;
bc->m_debugDrawer->drawLine(pos0, pos1, color);
}
}
}
static void debugDrawPhase(const btBatchedConstraints* bc,
btConstraintArray* constraints,
const btAlignedObjectArray<btSolverBody>& bodies,
int iPhase,
const btVector3& color0,
const btVector3& color1,
const btVector3& offset)
{
BT_PROFILE("debugDrawPhase");
if (bc && bc->m_debugDrawer && iPhase < bc->m_phases.size())
{
const btBatchedConstraints::Range& phase = bc->m_phases[iPhase];
for (int iBatch = phase.begin; iBatch < phase.end; ++iBatch)
{
float tt = float(iBatch - phase.begin) / float(btMax(1, phase.end - phase.begin - 1));
btVector3 col = lerp(color0, color1, tt);
debugDrawSingleBatch(bc, constraints, bodies, iBatch, col, offset);
}
}
}
static void debugDrawAllBatches(const btBatchedConstraints* bc,
btConstraintArray* constraints,
const btAlignedObjectArray<btSolverBody>& bodies)
{
BT_PROFILE("debugDrawAllBatches");
if (bc && bc->m_debugDrawer && bc->m_phases.size() > 0)
{
btVector3 bboxMin(BT_LARGE_FLOAT, BT_LARGE_FLOAT, BT_LARGE_FLOAT);
btVector3 bboxMax = -bboxMin;
for (int iBody = 0; iBody < bodies.size(); ++iBody)
{
const btVector3& pos = bodies[iBody].getWorldTransform().getOrigin();
bboxMin.setMin(pos);
bboxMax.setMax(pos);
}
btVector3 bboxExtent = bboxMax - bboxMin;
btVector3 offsetBase = btVector3(0, bboxExtent.y() * 1.1f, 0);
btVector3 offsetStep = btVector3(0, 0, bboxExtent.z() * 1.1f);
int numPhases = bc->m_phases.size();
for (int iPhase = 0; iPhase < numPhases; ++iPhase)
{
float b = float(iPhase) / float(numPhases - 1);
btVector3 color0 = btVector3(1, 0, b);
btVector3 color1 = btVector3(0, 1, b);
btVector3 offset = offsetBase + offsetStep * (float(iPhase) - float(numPhases - 1) * 0.5);
debugDrawPhase(bc, constraints, bodies, iPhase, color0, color1, offset);
}
}
}
static void initBatchedBodyDynamicFlags(btAlignedObjectArray<bool>* outBodyDynamicFlags, const btAlignedObjectArray<btSolverBody>& bodies)
{
BT_PROFILE("initBatchedBodyDynamicFlags");
btAlignedObjectArray<bool>& bodyDynamicFlags = *outBodyDynamicFlags;
bodyDynamicFlags.resizeNoInitialize(bodies.size());
for (int i = 0; i < bodies.size(); ++i)
{
const btSolverBody& body = bodies[i];
bodyDynamicFlags[i] = (body.internalGetInvMass().x() > btScalar(0));
}
}
static int runLengthEncodeConstraintInfo(btBatchedConstraintInfo* outConInfos, int numConstraints)
{
BT_PROFILE("runLengthEncodeConstraintInfo");
// detect and run-length encode constraint rows that repeat the same bodies
int iDest = 0;
int iSrc = 0;
while (iSrc < numConstraints)
{
const btBatchedConstraintInfo& srcConInfo = outConInfos[iSrc];
btBatchedConstraintInfo& conInfo = outConInfos[iDest];
conInfo.constraintIndex = iSrc;
conInfo.bodyIds[0] = srcConInfo.bodyIds[0];
conInfo.bodyIds[1] = srcConInfo.bodyIds[1];
while (iSrc < numConstraints && outConInfos[iSrc].bodyIds[0] == srcConInfo.bodyIds[0] && outConInfos[iSrc].bodyIds[1] == srcConInfo.bodyIds[1])
{
++iSrc;
}
conInfo.numConstraintRows = iSrc - conInfo.constraintIndex;
++iDest;
}
return iDest;
}
struct ReadSolverConstraintsLoop : public btIParallelForBody
{
btBatchedConstraintInfo* m_outConInfos;
btConstraintArray* m_constraints;
ReadSolverConstraintsLoop(btBatchedConstraintInfo* outConInfos, btConstraintArray* constraints)
{
m_outConInfos = outConInfos;
m_constraints = constraints;
}
void forLoop(int iBegin, int iEnd) const BT_OVERRIDE
{
for (int i = iBegin; i < iEnd; ++i)
{
btBatchedConstraintInfo& conInfo = m_outConInfos[i];
const btSolverConstraint& con = m_constraints->at(i);
conInfo.bodyIds[0] = con.m_solverBodyIdA;
conInfo.bodyIds[1] = con.m_solverBodyIdB;
conInfo.constraintIndex = i;
conInfo.numConstraintRows = 1;
}
}
};
static int initBatchedConstraintInfo(btBatchedConstraintInfo* outConInfos, btConstraintArray* constraints)
{
BT_PROFILE("initBatchedConstraintInfo");
int numConstraints = constraints->size();
bool inParallel = true;
if (inParallel)
{
ReadSolverConstraintsLoop loop(outConInfos, constraints);
int grainSize = 1200;
btParallelFor(0, numConstraints, grainSize, loop);
}
else
{
for (int i = 0; i < numConstraints; ++i)
{
btBatchedConstraintInfo& conInfo = outConInfos[i];
const btSolverConstraint& con = constraints->at(i);
conInfo.bodyIds[0] = con.m_solverBodyIdA;
conInfo.bodyIds[1] = con.m_solverBodyIdB;
conInfo.constraintIndex = i;
conInfo.numConstraintRows = 1;
}
}
bool useRunLengthEncoding = true;
if (useRunLengthEncoding)
{
numConstraints = runLengthEncodeConstraintInfo(outConInfos, numConstraints);
}
return numConstraints;
}
static void expandConstraintRowsInPlace(int* constraintBatchIds, const btBatchedConstraintInfo* conInfos, int numConstraints, int numConstraintRows)
{
BT_PROFILE("expandConstraintRowsInPlace");
if (numConstraintRows > numConstraints)
{
// we walk the array in reverse to avoid overwriteing
for (int iCon = numConstraints - 1; iCon >= 0; --iCon)
{
const btBatchedConstraintInfo& conInfo = conInfos[iCon];
int iBatch = constraintBatchIds[iCon];
for (int i = conInfo.numConstraintRows - 1; i >= 0; --i)
{
int iDest = conInfo.constraintIndex + i;
btAssert(iDest >= iCon);
btAssert(iDest >= 0 && iDest < numConstraintRows);
constraintBatchIds[iDest] = iBatch;
}
}
}
}
static void expandConstraintRows(int* destConstraintBatchIds, const int* srcConstraintBatchIds, const btBatchedConstraintInfo* conInfos, int numConstraints, int numConstraintRows)
{
BT_PROFILE("expandConstraintRows");
for (int iCon = 0; iCon < numConstraints; ++iCon)
{
const btBatchedConstraintInfo& conInfo = conInfos[iCon];
int iBatch = srcConstraintBatchIds[iCon];
for (int i = 0; i < conInfo.numConstraintRows; ++i)
{
int iDest = conInfo.constraintIndex + i;
btAssert(iDest >= iCon);
btAssert(iDest >= 0 && iDest < numConstraintRows);
destConstraintBatchIds[iDest] = iBatch;
}
}
}
struct ExpandConstraintRowsLoop : public btIParallelForBody
{
int* m_destConstraintBatchIds;
const int* m_srcConstraintBatchIds;
const btBatchedConstraintInfo* m_conInfos;
int m_numConstraintRows;
ExpandConstraintRowsLoop(int* destConstraintBatchIds, const int* srcConstraintBatchIds, const btBatchedConstraintInfo* conInfos, int numConstraintRows)
{
m_destConstraintBatchIds = destConstraintBatchIds;
m_srcConstraintBatchIds = srcConstraintBatchIds;
m_conInfos = conInfos;
m_numConstraintRows = numConstraintRows;
}
void forLoop(int iBegin, int iEnd) const BT_OVERRIDE
{
expandConstraintRows(m_destConstraintBatchIds, m_srcConstraintBatchIds + iBegin, m_conInfos + iBegin, iEnd - iBegin, m_numConstraintRows);
}
};
static void expandConstraintRowsMt(int* destConstraintBatchIds, const int* srcConstraintBatchIds, const btBatchedConstraintInfo* conInfos, int numConstraints, int numConstraintRows)
{
BT_PROFILE("expandConstraintRowsMt");
ExpandConstraintRowsLoop loop(destConstraintBatchIds, srcConstraintBatchIds, conInfos, numConstraintRows);
int grainSize = 600;
btParallelFor(0, numConstraints, grainSize, loop);
}
static void initBatchedConstraintInfoArray(btAlignedObjectArray<btBatchedConstraintInfo>* outConInfos, btConstraintArray* constraints)
{
BT_PROFILE("initBatchedConstraintInfoArray");
btAlignedObjectArray<btBatchedConstraintInfo>& conInfos = *outConInfos;
int numConstraints = constraints->size();
conInfos.resizeNoInitialize(numConstraints);
int newSize = initBatchedConstraintInfo(&outConInfos->at(0), constraints);
conInfos.resizeNoInitialize(newSize);
}
static void mergeSmallBatches(btBatchInfo* batches, int iBeginBatch, int iEndBatch, int minBatchSize, int maxBatchSize)
{
BT_PROFILE("mergeSmallBatches");
for (int iBatch = iEndBatch - 1; iBatch >= iBeginBatch; --iBatch)
{
btBatchInfo& batch = batches[iBatch];
if (batch.mergeIndex == kNoMerge && batch.numConstraints > 0 && batch.numConstraints < minBatchSize)
{
for (int iDestBatch = iBatch - 1; iDestBatch >= iBeginBatch; --iDestBatch)
{
btBatchInfo& destBatch = batches[iDestBatch];
if (destBatch.mergeIndex == kNoMerge && (destBatch.numConstraints + batch.numConstraints) < maxBatchSize)
{
destBatch.numConstraints += batch.numConstraints;
batch.numConstraints = 0;
batch.mergeIndex = iDestBatch;
break;
}
}
}
}
// flatten mergeIndexes
// e.g. in case where A was merged into B and then B was merged into C, we need A to point to C instead of B
// Note: loop goes forward through batches because batches always merge from higher indexes to lower,
// so by going from low to high it reduces the amount of trail-following
for (int iBatch = iBeginBatch; iBatch < iEndBatch; ++iBatch)
{
btBatchInfo& batch = batches[iBatch];
if (batch.mergeIndex != kNoMerge)
{
int iMergeDest = batches[batch.mergeIndex].mergeIndex;
// follow trail of merges to the end
while (iMergeDest != kNoMerge)
{
int iNext = batches[iMergeDest].mergeIndex;
if (iNext == kNoMerge)
{
batch.mergeIndex = iMergeDest;
break;
}
iMergeDest = iNext;
}
}
}
}
static void updateConstraintBatchIdsForMerges(int* constraintBatchIds, int numConstraints, const btBatchInfo* batches, int numBatches)
{
BT_PROFILE("updateConstraintBatchIdsForMerges");
// update batchIds to account for merges
for (int i = 0; i < numConstraints; ++i)
{
int iBatch = constraintBatchIds[i];
btAssert(iBatch < numBatches);
// if this constraint references a batch that was merged into another batch
if (batches[iBatch].mergeIndex != kNoMerge)
{
// update batchId
constraintBatchIds[i] = batches[iBatch].mergeIndex;
}
}
}
struct UpdateConstraintBatchIdsForMergesLoop : public btIParallelForBody
{
int* m_constraintBatchIds;
const btBatchInfo* m_batches;
int m_numBatches;
UpdateConstraintBatchIdsForMergesLoop(int* constraintBatchIds, const btBatchInfo* batches, int numBatches)
{
m_constraintBatchIds = constraintBatchIds;
m_batches = batches;
m_numBatches = numBatches;
}
void forLoop(int iBegin, int iEnd) const BT_OVERRIDE
{
BT_PROFILE("UpdateConstraintBatchIdsForMergesLoop");
updateConstraintBatchIdsForMerges(m_constraintBatchIds + iBegin, iEnd - iBegin, m_batches, m_numBatches);
}
};
static void updateConstraintBatchIdsForMergesMt(int* constraintBatchIds, int numConstraints, const btBatchInfo* batches, int numBatches)
{
BT_PROFILE("updateConstraintBatchIdsForMergesMt");
UpdateConstraintBatchIdsForMergesLoop loop(constraintBatchIds, batches, numBatches);
int grainSize = 800;
btParallelFor(0, numConstraints, grainSize, loop);
}
inline bool BatchCompare(const btBatchedConstraints::Range& a, const btBatchedConstraints::Range& b)
{
int lenA = a.end - a.begin;
int lenB = b.end - b.begin;
return lenA > lenB;
}
static void writeOutConstraintIndicesForRangeOfBatches(btBatchedConstraints* bc,
const int* constraintBatchIds,
int numConstraints,
int* constraintIdPerBatch,
int batchBegin,
int batchEnd)
{
BT_PROFILE("writeOutConstraintIndicesForRangeOfBatches");
for (int iCon = 0; iCon < numConstraints; ++iCon)
{
int iBatch = constraintBatchIds[iCon];
if (iBatch >= batchBegin && iBatch < batchEnd)
{
int iDestCon = constraintIdPerBatch[iBatch];
constraintIdPerBatch[iBatch] = iDestCon + 1;
bc->m_constraintIndices[iDestCon] = iCon;
}
}
}
struct WriteOutConstraintIndicesLoop : public btIParallelForBody
{
btBatchedConstraints* m_batchedConstraints;
const int* m_constraintBatchIds;
int m_numConstraints;
int* m_constraintIdPerBatch;
int m_maxNumBatchesPerPhase;
WriteOutConstraintIndicesLoop(btBatchedConstraints* bc, const int* constraintBatchIds, int numConstraints, int* constraintIdPerBatch, int maxNumBatchesPerPhase)
{
m_batchedConstraints = bc;
m_constraintBatchIds = constraintBatchIds;
m_numConstraints = numConstraints;
m_constraintIdPerBatch = constraintIdPerBatch;
m_maxNumBatchesPerPhase = maxNumBatchesPerPhase;
}
void forLoop(int iBegin, int iEnd) const BT_OVERRIDE
{
BT_PROFILE("WriteOutConstraintIndicesLoop");
int batchBegin = iBegin * m_maxNumBatchesPerPhase;
int batchEnd = iEnd * m_maxNumBatchesPerPhase;
writeOutConstraintIndicesForRangeOfBatches(m_batchedConstraints,
m_constraintBatchIds,
m_numConstraints,
m_constraintIdPerBatch,
batchBegin,
batchEnd);
}
};
static void writeOutConstraintIndicesMt(btBatchedConstraints* bc,
const int* constraintBatchIds,
int numConstraints,
int* constraintIdPerBatch,
int maxNumBatchesPerPhase,
int numPhases)
{
BT_PROFILE("writeOutConstraintIndicesMt");
bool inParallel = true;
if (inParallel)
{
WriteOutConstraintIndicesLoop loop(bc, constraintBatchIds, numConstraints, constraintIdPerBatch, maxNumBatchesPerPhase);
btParallelFor(0, numPhases, 1, loop);
}
else
{
for (int iCon = 0; iCon < numConstraints; ++iCon)
{
int iBatch = constraintBatchIds[iCon];
int iDestCon = constraintIdPerBatch[iBatch];
constraintIdPerBatch[iBatch] = iDestCon + 1;
bc->m_constraintIndices[iDestCon] = iCon;
}
}
}
static void writeGrainSizes(btBatchedConstraints* bc)
{
typedef btBatchedConstraints::Range Range;
int numPhases = bc->m_phases.size();
bc->m_phaseGrainSize.resizeNoInitialize(numPhases);
int numThreads = btGetTaskScheduler()->getNumThreads();
for (int iPhase = 0; iPhase < numPhases; ++iPhase)
{
const Range& phase = bc->m_phases[iPhase];
int numBatches = phase.end - phase.begin;
float grainSize = std::floor((0.25f * numBatches / float(numThreads)) + 0.0f);
bc->m_phaseGrainSize[iPhase] = btMax(1, int(grainSize));
}
}
static void writeOutBatches(btBatchedConstraints* bc,
const int* constraintBatchIds,
int numConstraints,
const btBatchInfo* batches,
int* batchWork,
int maxNumBatchesPerPhase,
int numPhases)
{
BT_PROFILE("writeOutBatches");
typedef btBatchedConstraints::Range Range;
bc->m_constraintIndices.reserve(numConstraints);
bc->m_batches.resizeNoInitialize(0);
bc->m_phases.resizeNoInitialize(0);
//int maxNumBatches = numPhases * maxNumBatchesPerPhase;
{
int* constraintIdPerBatch = batchWork; // for each batch, keep an index into the next available slot in the m_constraintIndices array
int iConstraint = 0;
for (int iPhase = 0; iPhase < numPhases; ++iPhase)
{
int curPhaseBegin = bc->m_batches.size();
int iBegin = iPhase * maxNumBatchesPerPhase;
int iEnd = iBegin + maxNumBatchesPerPhase;
for (int i = iBegin; i < iEnd; ++i)
{
const btBatchInfo& batch = batches[i];
int curBatchBegin = iConstraint;
constraintIdPerBatch[i] = curBatchBegin; // record the start of each batch in m_constraintIndices array
int numConstraints = batch.numConstraints;
iConstraint += numConstraints;
if (numConstraints > 0)
{
bc->m_batches.push_back(Range(curBatchBegin, iConstraint));
}
}
// if any batches were emitted this phase,
if (bc->m_batches.size() > curPhaseBegin)
{
// output phase
bc->m_phases.push_back(Range(curPhaseBegin, bc->m_batches.size()));
}
}
btAssert(iConstraint == numConstraints);
bc->m_constraintIndices.resizeNoInitialize(numConstraints);
writeOutConstraintIndicesMt(bc, constraintBatchIds, numConstraints, constraintIdPerBatch, maxNumBatchesPerPhase, numPhases);
}
// for each phase
for (int iPhase = 0; iPhase < bc->m_phases.size(); ++iPhase)
{
// sort the batches from largest to smallest (can be helpful to some task schedulers)
const Range& curBatches = bc->m_phases[iPhase];
bc->m_batches.quickSortInternal(BatchCompare, curBatches.begin, curBatches.end - 1);
}
bc->m_phaseOrder.resize(bc->m_phases.size());
for (int i = 0; i < bc->m_phases.size(); ++i)
{
bc->m_phaseOrder[i] = i;
}
writeGrainSizes(bc);
}
//
// PreallocatedMemoryHelper -- helper object for allocating a number of chunks of memory in a single contiguous block.
// It is generally more efficient to do a single larger allocation than many smaller allocations.
//
// Example Usage:
//
// btVector3* bodyPositions = NULL;
// btBatchedConstraintInfo* conInfos = NULL;
// {
// PreallocatedMemoryHelper<8> memHelper;
// memHelper.addChunk( (void**) &bodyPositions, sizeof( btVector3 ) * bodies.size() );
// memHelper.addChunk( (void**) &conInfos, sizeof( btBatchedConstraintInfo ) * numConstraints );
// void* memPtr = malloc( memHelper.getSizeToAllocate() ); // allocate the memory
// memHelper.setChunkPointers( memPtr ); // update pointers to chunks
// }
template <int N>
class PreallocatedMemoryHelper
{
struct Chunk
{
void** ptr;
size_t size;
};
Chunk m_chunks[N];
int m_numChunks;
public:
PreallocatedMemoryHelper() { m_numChunks = 0; }
void addChunk(void** ptr, size_t sz)
{
btAssert(m_numChunks < N);
if (m_numChunks < N)
{
Chunk& chunk = m_chunks[m_numChunks];
chunk.ptr = ptr;
chunk.size = sz;
m_numChunks++;
}
}
size_t getSizeToAllocate() const
{
size_t totalSize = 0;
for (int i = 0; i < m_numChunks; ++i)
{
totalSize += m_chunks[i].size;
}
return totalSize;
}
void setChunkPointers(void* mem) const
{
size_t totalSize = 0;
for (int i = 0; i < m_numChunks; ++i)
{
const Chunk& chunk = m_chunks[i];
char* chunkPtr = static_cast<char*>(mem) + totalSize;
*chunk.ptr = chunkPtr;
totalSize += chunk.size;
}
}
};
static btVector3 findMaxDynamicConstraintExtent(
btVector3* bodyPositions,
bool* bodyDynamicFlags,
btBatchedConstraintInfo* conInfos,
int numConstraints,
int numBodies)
{
BT_PROFILE("findMaxDynamicConstraintExtent");
btVector3 consExtent = btVector3(1, 1, 1) * 0.001;
for (int iCon = 0; iCon < numConstraints; ++iCon)
{
const btBatchedConstraintInfo& con = conInfos[iCon];
int iBody0 = con.bodyIds[0];
int iBody1 = con.bodyIds[1];
btAssert(iBody0 >= 0 && iBody0 < numBodies);
btAssert(iBody1 >= 0 && iBody1 < numBodies);
// is it a dynamic constraint?
if (bodyDynamicFlags[iBody0] && bodyDynamicFlags[iBody1])
{
btVector3 delta = bodyPositions[iBody1] - bodyPositions[iBody0];
consExtent.setMax(delta.absolute());
}
}
return consExtent;
}
struct btIntVec3
{
int m_ints[3];
SIMD_FORCE_INLINE const int& operator[](int i) const { return m_ints[i]; }
SIMD_FORCE_INLINE int& operator[](int i) { return m_ints[i]; }
};
struct AssignConstraintsToGridBatchesParams
{
bool* bodyDynamicFlags;
btIntVec3* bodyGridCoords;
int numBodies;
btBatchedConstraintInfo* conInfos;
int* constraintBatchIds;
btIntVec3 gridChunkDim;
int maxNumBatchesPerPhase;
int numPhases;
int phaseMask;
AssignConstraintsToGridBatchesParams()
{
memset(this, 0, sizeof(*this));
}
};
static void assignConstraintsToGridBatches(const AssignConstraintsToGridBatchesParams& params, int iConBegin, int iConEnd)
{
BT_PROFILE("assignConstraintsToGridBatches");
// (can be done in parallel)
for (int iCon = iConBegin; iCon < iConEnd; ++iCon)
{
const btBatchedConstraintInfo& con = params.conInfos[iCon];
int iBody0 = con.bodyIds[0];
int iBody1 = con.bodyIds[1];
int iPhase = iCon; //iBody0; // pseudorandom choice to distribute evenly amongst phases
iPhase &= params.phaseMask;
int gridCoord[3];
// is it a dynamic constraint?
if (params.bodyDynamicFlags[iBody0] && params.bodyDynamicFlags[iBody1])
{
const btIntVec3& body0Coords = params.bodyGridCoords[iBody0];
const btIntVec3& body1Coords = params.bodyGridCoords[iBody1];
// for each dimension x,y,z,
for (int i = 0; i < 3; ++i)
{
int coordMin = btMin(body0Coords.m_ints[i], body1Coords.m_ints[i]);
int coordMax = btMax(body0Coords.m_ints[i], body1Coords.m_ints[i]);
if (coordMin != coordMax)
{
btAssert(coordMax == coordMin + 1);
if ((coordMin & 1) == 0)
{
iPhase &= ~(1 << i); // force bit off
}
else
{
iPhase |= (1 << i); // force bit on
iPhase &= params.phaseMask;
}
}
gridCoord[i] = coordMin;
}
}
else
{
if (!params.bodyDynamicFlags[iBody0])
{
iBody0 = con.bodyIds[1];
}
btAssert(params.bodyDynamicFlags[iBody0]);
const btIntVec3& body0Coords = params.bodyGridCoords[iBody0];
// for each dimension x,y,z,
for (int i = 0; i < 3; ++i)
{
gridCoord[i] = body0Coords.m_ints[i];
}
}
// calculate chunk coordinates
int chunkCoord[3];
btIntVec3 gridChunkDim = params.gridChunkDim;
// for each dimension x,y,z,
for (int i = 0; i < 3; ++i)
{
int coordOffset = (iPhase >> i) & 1;
chunkCoord[i] = (gridCoord[i] - coordOffset) / 2;
btClamp(chunkCoord[i], 0, gridChunkDim[i] - 1);
btAssert(chunkCoord[i] < gridChunkDim[i]);
}
int iBatch = iPhase * params.maxNumBatchesPerPhase + chunkCoord[0] + chunkCoord[1] * gridChunkDim[0] + chunkCoord[2] * gridChunkDim[0] * gridChunkDim[1];
btAssert(iBatch >= 0 && iBatch < params.maxNumBatchesPerPhase * params.numPhases);
params.constraintBatchIds[iCon] = iBatch;
}
}
struct AssignConstraintsToGridBatchesLoop : public btIParallelForBody
{
const AssignConstraintsToGridBatchesParams* m_params;
AssignConstraintsToGridBatchesLoop(const AssignConstraintsToGridBatchesParams& params)
{
m_params = ¶ms;
}
void forLoop(int iBegin, int iEnd) const BT_OVERRIDE
{
assignConstraintsToGridBatches(*m_params, iBegin, iEnd);
}
};
//
// setupSpatialGridBatchesMt -- generate batches using a uniform 3D grid
//
/*
Bodies are treated as 3D points at their center of mass. We only consider dynamic bodies at this stage,
because only dynamic bodies are mutated when a constraint is solved, thus subject to race conditions.
1. Compute a bounding box around all dynamic bodies
2. Compute the maximum extent of all dynamic constraints. Each dynamic constraint is treated as a line segment, and we need the size of
box that will fully enclose any single dynamic constraint
3. Establish the cell size of our grid, the cell size in each dimension must be at least as large as the dynamic constraints max-extent,
so that no dynamic constraint can span more than 2 cells of our grid on any axis of the grid. The cell size should be adjusted
larger in order to keep the total number of cells from being excessively high
Key idea: Given that each constraint spans 1 or 2 grid cells in each dimension, we can handle all constraints by processing
in chunks of 2x2x2 cells with 8 different 1-cell offsets ((0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0)...).
For each of the 8 offsets, we create a phase, and for each 2x2x2 chunk with dynamic constraints becomes a batch in that phase.
4. Once the grid is established, we can calculate for each constraint which phase and batch it belongs in.
5. Do a merge small batches on the batches of each phase separately, to try to even out the sizes of batches
Optionally, we can "collapse" one dimension of our 3D grid to turn it into a 2D grid, which reduces the number of phases
to 4. With fewer phases, there are more constraints per phase and this makes it easier to create batches of a useful size.
*/
//
static void setupSpatialGridBatchesMt(
btBatchedConstraints* batchedConstraints,
btAlignedObjectArray<char>* scratchMemory,
btConstraintArray* constraints,
const btAlignedObjectArray<btSolverBody>& bodies,
int minBatchSize,
int maxBatchSize,
bool use2DGrid)
{
BT_PROFILE("setupSpatialGridBatchesMt");
const int numPhases = 8;
int numConstraints = constraints->size();
int numConstraintRows = constraints->size();
const int maxGridChunkCount = 128;
int allocNumBatchesPerPhase = maxGridChunkCount;
int minNumBatchesPerPhase = 16;
int allocNumBatches = allocNumBatchesPerPhase * numPhases;
btVector3* bodyPositions = NULL;
bool* bodyDynamicFlags = NULL;
btIntVec3* bodyGridCoords = NULL;
btBatchInfo* batches = NULL;
int* batchWork = NULL;
btBatchedConstraintInfo* conInfos = NULL;
int* constraintBatchIds = NULL;
int* constraintRowBatchIds = NULL;
{
PreallocatedMemoryHelper<10> memHelper;
memHelper.addChunk((void**)&bodyPositions, sizeof(btVector3) * bodies.size());
memHelper.addChunk((void**)&bodyDynamicFlags, sizeof(bool) * bodies.size());
memHelper.addChunk((void**)&bodyGridCoords, sizeof(btIntVec3) * bodies.size());
memHelper.addChunk((void**)&batches, sizeof(btBatchInfo) * allocNumBatches);
memHelper.addChunk((void**)&batchWork, sizeof(int) * allocNumBatches);
memHelper.addChunk((void**)&conInfos, sizeof(btBatchedConstraintInfo) * numConstraints);
memHelper.addChunk((void**)&constraintBatchIds, sizeof(int) * numConstraints);
memHelper.addChunk((void**)&constraintRowBatchIds, sizeof(int) * numConstraintRows);
size_t scratchSize = memHelper.getSizeToAllocate();
// if we need to reallocate
if (scratchMemory->capacity() < scratchSize)
{
// allocate 6.25% extra to avoid repeated reallocs
scratchMemory->reserve(scratchSize + scratchSize / 16);
}
scratchMemory->resizeNoInitialize(scratchSize);
char* memPtr = &scratchMemory->at(0);
memHelper.setChunkPointers(memPtr);
}
numConstraints = initBatchedConstraintInfo(conInfos, constraints);
// compute bounding box around all dynamic bodies
// (could be done in parallel)
btVector3 bboxMin(BT_LARGE_FLOAT, BT_LARGE_FLOAT, BT_LARGE_FLOAT);
btVector3 bboxMax = -bboxMin;
//int dynamicBodyCount = 0;
for (int i = 0; i < bodies.size(); ++i)
{
const btSolverBody& body = bodies[i];
btVector3 bodyPos = body.getWorldTransform().getOrigin();
bool isDynamic = (body.internalGetInvMass().x() > btScalar(0));
bodyPositions[i] = bodyPos;
bodyDynamicFlags[i] = isDynamic;
if (isDynamic)
{
//dynamicBodyCount++;
bboxMin.setMin(bodyPos);
bboxMax.setMax(bodyPos);
}
}
// find max extent of all dynamic constraints
// (could be done in parallel)
btVector3 consExtent = findMaxDynamicConstraintExtent(bodyPositions, bodyDynamicFlags, conInfos, numConstraints, bodies.size());
btVector3 gridExtent = bboxMax - bboxMin;
gridExtent.setMax(btVector3(btScalar(1), btScalar(1), btScalar(1)));
btVector3 gridCellSize = consExtent;
int gridDim[3];
gridDim[0] = int(1.0 + gridExtent.x() / gridCellSize.x());
gridDim[1] = int(1.0 + gridExtent.y() / gridCellSize.y());
gridDim[2] = int(1.0 + gridExtent.z() / gridCellSize.z());
// if we can collapse an axis, it will cut our number of phases in half which could be more efficient
int phaseMask = 7;
bool collapseAxis = use2DGrid;
if (collapseAxis)
{
// pick the smallest axis to collapse, leaving us with the greatest number of cells in our grid
int iAxisToCollapse = 0;
int axisDim = gridDim[iAxisToCollapse];
//for each dimension
for (int i = 0; i < 3; ++i)
{
if (gridDim[i] < axisDim)
{
iAxisToCollapse = i;
axisDim = gridDim[i];
}
}
// collapse it
gridCellSize[iAxisToCollapse] = gridExtent[iAxisToCollapse] * 2.0f;
phaseMask &= ~(1 << iAxisToCollapse);
}
int numGridChunks = 0;
btIntVec3 gridChunkDim; // each chunk is 2x2x2 group of cells
while (true)
{
gridDim[0] = int(1.0 + gridExtent.x() / gridCellSize.x());
gridDim[1] = int(1.0 + gridExtent.y() / gridCellSize.y());
gridDim[2] = int(1.0 + gridExtent.z() / gridCellSize.z());
gridChunkDim[0] = btMax(1, (gridDim[0] + 0) / 2);
gridChunkDim[1] = btMax(1, (gridDim[1] + 0) / 2);
gridChunkDim[2] = btMax(1, (gridDim[2] + 0) / 2);
numGridChunks = gridChunkDim[0] * gridChunkDim[1] * gridChunkDim[2];
float nChunks = float(gridChunkDim[0]) * float(gridChunkDim[1]) * float(gridChunkDim[2]); // suceptible to integer overflow
if (numGridChunks <= maxGridChunkCount && nChunks <= maxGridChunkCount)
{
break;
}
gridCellSize *= 1.25; // should roughly cut numCells in half
}
btAssert(numGridChunks <= maxGridChunkCount);
int maxNumBatchesPerPhase = numGridChunks;
// for each dynamic body, compute grid coords
btVector3 invGridCellSize = btVector3(1, 1, 1) / gridCellSize;
// (can be done in parallel)
for (int iBody = 0; iBody < bodies.size(); ++iBody)
{
btIntVec3& coords = bodyGridCoords[iBody];
if (bodyDynamicFlags[iBody])
{
btVector3 v = (bodyPositions[iBody] - bboxMin) * invGridCellSize;
coords.m_ints[0] = int(v.x());
coords.m_ints[1] = int(v.y());
coords.m_ints[2] = int(v.z());
btAssert(coords.m_ints[0] >= 0 && coords.m_ints[0] < gridDim[0]);
btAssert(coords.m_ints[1] >= 0 && coords.m_ints[1] < gridDim[1]);
btAssert(coords.m_ints[2] >= 0 && coords.m_ints[2] < gridDim[2]);
}
else
{
coords.m_ints[0] = -1;
coords.m_ints[1] = -1;
coords.m_ints[2] = -1;
}
}
for (int iPhase = 0; iPhase < numPhases; ++iPhase)
{
int batchBegin = iPhase * maxNumBatchesPerPhase;
int batchEnd = batchBegin + maxNumBatchesPerPhase;
for (int iBatch = batchBegin; iBatch < batchEnd; ++iBatch)
{
btBatchInfo& batch = batches[iBatch];
batch = btBatchInfo();
}
}
{
AssignConstraintsToGridBatchesParams params;
params.bodyDynamicFlags = bodyDynamicFlags;
params.bodyGridCoords = bodyGridCoords;
params.numBodies = bodies.size();
params.conInfos = conInfos;
params.constraintBatchIds = constraintBatchIds;
params.gridChunkDim = gridChunkDim;
params.maxNumBatchesPerPhase = maxNumBatchesPerPhase;
params.numPhases = numPhases;
params.phaseMask = phaseMask;
bool inParallel = true;
if (inParallel)
{
AssignConstraintsToGridBatchesLoop loop(params);
int grainSize = 250;
btParallelFor(0, numConstraints, grainSize, loop);
}
else
{
assignConstraintsToGridBatches(params, 0, numConstraints);
}
}
for (int iCon = 0; iCon < numConstraints; ++iCon)
{
const btBatchedConstraintInfo& con = conInfos[iCon];
int iBatch = constraintBatchIds[iCon];
btBatchInfo& batch = batches[iBatch];
batch.numConstraints += con.numConstraintRows;
}
for (int iPhase = 0; iPhase < numPhases; ++iPhase)
{
// if phase is legit,
if (iPhase == (iPhase & phaseMask))
{
int iBeginBatch = iPhase * maxNumBatchesPerPhase;
int iEndBatch = iBeginBatch + maxNumBatchesPerPhase;
mergeSmallBatches(batches, iBeginBatch, iEndBatch, minBatchSize, maxBatchSize);
}
}
// all constraints have been assigned a batchId
updateConstraintBatchIdsForMergesMt(constraintBatchIds, numConstraints, batches, maxNumBatchesPerPhase * numPhases);
if (numConstraintRows > numConstraints)
{
expandConstraintRowsMt(&constraintRowBatchIds[0], &constraintBatchIds[0], &conInfos[0], numConstraints, numConstraintRows);
}
else
{
constraintRowBatchIds = constraintBatchIds;
}
writeOutBatches(batchedConstraints, constraintRowBatchIds, numConstraintRows, batches, batchWork, maxNumBatchesPerPhase, numPhases);
btAssert(batchedConstraints->validate(constraints, bodies));
}
static void setupSingleBatch(
btBatchedConstraints* bc,
int numConstraints)
{
BT_PROFILE("setupSingleBatch");
typedef btBatchedConstraints::Range Range;
bc->m_constraintIndices.resize(numConstraints);
for (int i = 0; i < numConstraints; ++i)
{
bc->m_constraintIndices[i] = i;
}
bc->m_batches.resizeNoInitialize(0);
bc->m_phases.resizeNoInitialize(0);
bc->m_phaseOrder.resizeNoInitialize(0);
bc->m_phaseGrainSize.resizeNoInitialize(0);
if (numConstraints > 0)
{
bc->m_batches.push_back(Range(0, numConstraints));
bc->m_phases.push_back(Range(0, 1));
bc->m_phaseOrder.push_back(0);
bc->m_phaseGrainSize.push_back(1);
}
}
void btBatchedConstraints::setup(
btConstraintArray* constraints,
const btAlignedObjectArray<btSolverBody>& bodies,
BatchingMethod batchingMethod,
int minBatchSize,
int maxBatchSize,
btAlignedObjectArray<char>* scratchMemory)
{
if (constraints->size() >= minBatchSize * 4)
{
bool use2DGrid = batchingMethod == BATCHING_METHOD_SPATIAL_GRID_2D;
setupSpatialGridBatchesMt(this, scratchMemory, constraints, bodies, minBatchSize, maxBatchSize, use2DGrid);
if (s_debugDrawBatches)
{
debugDrawAllBatches(this, constraints, bodies);
}
}
else
{
setupSingleBatch(this, constraints->size());
}
}
|