summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.cpp
blob: ec638f60ba539055111410981c5994c7705c64fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/


#include "btSubSimplexConvexCast.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"

#include "BulletCollision/CollisionShapes/btMinkowskiSumShape.h"
#include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h"
#include "btPointCollector.h"
#include "LinearMath/btTransformUtil.h"

btSubsimplexConvexCast::btSubsimplexConvexCast (const btConvexShape* convexA,const btConvexShape* convexB,btSimplexSolverInterface* simplexSolver)
:m_simplexSolver(simplexSolver),
m_convexA(convexA),m_convexB(convexB)
{
}

///Typically the conservative advancement reaches solution in a few iterations, clip it to 32 for degenerate cases.
///See discussion about this here http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=565
#ifdef BT_USE_DOUBLE_PRECISION
#define MAX_ITERATIONS 64
#else
#define MAX_ITERATIONS 32
#endif
bool	btSubsimplexConvexCast::calcTimeOfImpact(
		const btTransform& fromA,
		const btTransform& toA,
		const btTransform& fromB,
		const btTransform& toB,
		CastResult& result)
{

	m_simplexSolver->reset();

	btVector3 linVelA,linVelB;
	linVelA = toA.getOrigin()-fromA.getOrigin();
	linVelB = toB.getOrigin()-fromB.getOrigin();

	btScalar lambda = btScalar(0.);

	btTransform interpolatedTransA = fromA;
	btTransform interpolatedTransB = fromB;

	///take relative motion
	btVector3 r = (linVelA-linVelB);
	btVector3 v;
	
	btVector3 supVertexA = fromA(m_convexA->localGetSupportingVertex(-r*fromA.getBasis()));
	btVector3 supVertexB = fromB(m_convexB->localGetSupportingVertex(r*fromB.getBasis()));
	v = supVertexA-supVertexB;
	int maxIter = MAX_ITERATIONS;

	btVector3 n;
	n.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
	
	btVector3 c;

	


	btScalar dist2 = v.length2();
#ifdef BT_USE_DOUBLE_PRECISION
	btScalar epsilon = btScalar(0.0001);
#else
	btScalar epsilon = btScalar(0.0001);
#endif //BT_USE_DOUBLE_PRECISION
	btVector3	w,p;
	btScalar VdotR;
	
	while ( (dist2 > epsilon) && maxIter--)
	{
		supVertexA = interpolatedTransA(m_convexA->localGetSupportingVertex(-v*interpolatedTransA.getBasis()));
		supVertexB = interpolatedTransB(m_convexB->localGetSupportingVertex(v*interpolatedTransB.getBasis()));
		w = supVertexA-supVertexB;

		btScalar VdotW = v.dot(w);

		if (lambda > btScalar(1.0))
		{
			return false;
		}

		if ( VdotW > btScalar(0.))
		{
			VdotR = v.dot(r);

			if (VdotR >= -(SIMD_EPSILON*SIMD_EPSILON))
				return false;
			else
			{
				lambda = lambda - VdotW / VdotR;
				//interpolate to next lambda
				//	x = s + lambda * r;
				interpolatedTransA.getOrigin().setInterpolate3(fromA.getOrigin(),toA.getOrigin(),lambda);
				interpolatedTransB.getOrigin().setInterpolate3(fromB.getOrigin(),toB.getOrigin(),lambda);
				//m_simplexSolver->reset();
				//check next line
				 w = supVertexA-supVertexB;
				
				n = v;
				
			}
		} 
		///Just like regular GJK only add the vertex if it isn't already (close) to current vertex, it would lead to divisions by zero and NaN etc.
		if (!m_simplexSolver->inSimplex(w))
			m_simplexSolver->addVertex( w, supVertexA , supVertexB);

		if (m_simplexSolver->closest(v))
		{
			dist2 = v.length2();
			
			//todo: check this normal for validity
			//n=v;
			//printf("V=%f , %f, %f\n",v[0],v[1],v[2]);
			//printf("DIST2=%f\n",dist2);
			//printf("numverts = %i\n",m_simplexSolver->numVertices());
		} else
		{
			dist2 = btScalar(0.);
		} 
	}

	//int numiter = MAX_ITERATIONS - maxIter;
//	printf("number of iterations: %d", numiter);
	
	//don't report a time of impact when moving 'away' from the hitnormal
	

	result.m_fraction = lambda;
	if (n.length2() >= (SIMD_EPSILON*SIMD_EPSILON))
		result.m_normal = n.normalized();
	else
		result.m_normal = btVector3(btScalar(0.0), btScalar(0.0), btScalar(0.0));

	//don't report time of impact for motion away from the contact normal (or causes minor penetration)
	if (result.m_normal.dot(r)>=-result.m_allowedPenetration)
		return false;

	btVector3 hitA,hitB;
	m_simplexSolver->compute_points(hitA,hitB);
	result.m_hitPoint=hitB;
	return true;
}