summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletCollision/NarrowPhaseCollision/btPersistentManifold.cpp
blob: f1422cad4d9640d2d1f0d5dc08910250192afefc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#include "btPersistentManifold.h"
#include "LinearMath/btTransform.h"
#include "LinearMath/btSerializer.h"

#ifdef BT_USE_DOUBLE_PRECISION
#define btCollisionObjectData btCollisionObjectDoubleData
#else
#define btCollisionObjectData btCollisionObjectFloatData
#endif

btScalar gContactBreakingThreshold = btScalar(0.02);
ContactDestroyedCallback gContactDestroyedCallback = 0;
ContactProcessedCallback gContactProcessedCallback = 0;
ContactStartedCallback gContactStartedCallback = 0;
ContactEndedCallback gContactEndedCallback = 0;
///gContactCalcArea3Points will approximate the convex hull area using 3 points
///when setting it to false, it will use 4 points to compute the area: it is more accurate but slower
bool gContactCalcArea3Points = true;

btPersistentManifold::btPersistentManifold()
	: btTypedObject(BT_PERSISTENT_MANIFOLD_TYPE),
	  m_body0(0),
	  m_body1(0),
	  m_cachedPoints(0),
	  m_companionIdA(0),
	  m_companionIdB(0),
	  m_index1a(0)
{
}

#ifdef DEBUG_PERSISTENCY
#include <stdio.h>
void btPersistentManifold::DebugPersistency()
{
	int i;
	printf("DebugPersistency : numPoints %d\n", m_cachedPoints);
	for (i = 0; i < m_cachedPoints; i++)
	{
		printf("m_pointCache[%d].m_userPersistentData = %x\n", i, m_pointCache[i].m_userPersistentData);
	}
}
#endif  //DEBUG_PERSISTENCY

void btPersistentManifold::clearUserCache(btManifoldPoint& pt)
{
	void* oldPtr = pt.m_userPersistentData;
	if (oldPtr)
	{
#ifdef DEBUG_PERSISTENCY
		int i;
		int occurance = 0;
		for (i = 0; i < m_cachedPoints; i++)
		{
			if (m_pointCache[i].m_userPersistentData == oldPtr)
			{
				occurance++;
				if (occurance > 1)
					printf("error in clearUserCache\n");
			}
		}
		btAssert(occurance <= 0);
#endif  //DEBUG_PERSISTENCY

		if (pt.m_userPersistentData && gContactDestroyedCallback)
		{
			(*gContactDestroyedCallback)(pt.m_userPersistentData);
			pt.m_userPersistentData = 0;
		}

#ifdef DEBUG_PERSISTENCY
		DebugPersistency();
#endif
	}
}

static inline btScalar calcArea4Points(const btVector3& p0, const btVector3& p1, const btVector3& p2, const btVector3& p3)
{
	// It calculates possible 3 area constructed from random 4 points and returns the biggest one.

	btVector3 a[3], b[3];
	a[0] = p0 - p1;
	a[1] = p0 - p2;
	a[2] = p0 - p3;
	b[0] = p2 - p3;
	b[1] = p1 - p3;
	b[2] = p1 - p2;

	//todo: Following 3 cross production can be easily optimized by SIMD.
	btVector3 tmp0 = a[0].cross(b[0]);
	btVector3 tmp1 = a[1].cross(b[1]);
	btVector3 tmp2 = a[2].cross(b[2]);

	return btMax(btMax(tmp0.length2(), tmp1.length2()), tmp2.length2());
}

int btPersistentManifold::sortCachedPoints(const btManifoldPoint& pt)
{
	//calculate 4 possible cases areas, and take biggest area
	//also need to keep 'deepest'

	int maxPenetrationIndex = -1;
#define KEEP_DEEPEST_POINT 1
#ifdef KEEP_DEEPEST_POINT
	btScalar maxPenetration = pt.getDistance();
	for (int i = 0; i < 4; i++)
	{
		if (m_pointCache[i].getDistance() < maxPenetration)
		{
			maxPenetrationIndex = i;
			maxPenetration = m_pointCache[i].getDistance();
		}
	}
#endif  //KEEP_DEEPEST_POINT

	btScalar res0(btScalar(0.)), res1(btScalar(0.)), res2(btScalar(0.)), res3(btScalar(0.));

	if (gContactCalcArea3Points)
	{
		if (maxPenetrationIndex != 0)
		{
			btVector3 a0 = pt.m_localPointA - m_pointCache[1].m_localPointA;
			btVector3 b0 = m_pointCache[3].m_localPointA - m_pointCache[2].m_localPointA;
			btVector3 cross = a0.cross(b0);
			res0 = cross.length2();
		}
		if (maxPenetrationIndex != 1)
		{
			btVector3 a1 = pt.m_localPointA - m_pointCache[0].m_localPointA;
			btVector3 b1 = m_pointCache[3].m_localPointA - m_pointCache[2].m_localPointA;
			btVector3 cross = a1.cross(b1);
			res1 = cross.length2();
		}

		if (maxPenetrationIndex != 2)
		{
			btVector3 a2 = pt.m_localPointA - m_pointCache[0].m_localPointA;
			btVector3 b2 = m_pointCache[3].m_localPointA - m_pointCache[1].m_localPointA;
			btVector3 cross = a2.cross(b2);
			res2 = cross.length2();
		}

		if (maxPenetrationIndex != 3)
		{
			btVector3 a3 = pt.m_localPointA - m_pointCache[0].m_localPointA;
			btVector3 b3 = m_pointCache[2].m_localPointA - m_pointCache[1].m_localPointA;
			btVector3 cross = a3.cross(b3);
			res3 = cross.length2();
		}
	}
	else
	{
		if (maxPenetrationIndex != 0)
		{
			res0 = calcArea4Points(pt.m_localPointA, m_pointCache[1].m_localPointA, m_pointCache[2].m_localPointA, m_pointCache[3].m_localPointA);
		}

		if (maxPenetrationIndex != 1)
		{
			res1 = calcArea4Points(pt.m_localPointA, m_pointCache[0].m_localPointA, m_pointCache[2].m_localPointA, m_pointCache[3].m_localPointA);
		}

		if (maxPenetrationIndex != 2)
		{
			res2 = calcArea4Points(pt.m_localPointA, m_pointCache[0].m_localPointA, m_pointCache[1].m_localPointA, m_pointCache[3].m_localPointA);
		}

		if (maxPenetrationIndex != 3)
		{
			res3 = calcArea4Points(pt.m_localPointA, m_pointCache[0].m_localPointA, m_pointCache[1].m_localPointA, m_pointCache[2].m_localPointA);
		}
	}
	btVector4 maxvec(res0, res1, res2, res3);
	int biggestarea = maxvec.closestAxis4();
	return biggestarea;
}

int btPersistentManifold::getCacheEntry(const btManifoldPoint& newPoint) const
{
	btScalar shortestDist = getContactBreakingThreshold() * getContactBreakingThreshold();
	int size = getNumContacts();
	int nearestPoint = -1;
	for (int i = 0; i < size; i++)
	{
		const btManifoldPoint& mp = m_pointCache[i];

		btVector3 diffA = mp.m_localPointA - newPoint.m_localPointA;
		const btScalar distToManiPoint = diffA.dot(diffA);
		if (distToManiPoint < shortestDist)
		{
			shortestDist = distToManiPoint;
			nearestPoint = i;
		}
	}
	return nearestPoint;
}

int btPersistentManifold::addManifoldPoint(const btManifoldPoint& newPoint, bool isPredictive)
{
	if (!isPredictive)
	{
		btAssert(validContactDistance(newPoint));
	}

	int insertIndex = getNumContacts();
	if (insertIndex == MANIFOLD_CACHE_SIZE)
	{
#if MANIFOLD_CACHE_SIZE >= 4
		//sort cache so best points come first, based on area
		insertIndex = sortCachedPoints(newPoint);
#else
		insertIndex = 0;
#endif
		clearUserCache(m_pointCache[insertIndex]);
	}
	else
	{
		m_cachedPoints++;
	}
	if (insertIndex < 0)
		insertIndex = 0;

	btAssert(m_pointCache[insertIndex].m_userPersistentData == 0);
	m_pointCache[insertIndex] = newPoint;
	return insertIndex;
}

btScalar btPersistentManifold::getContactBreakingThreshold() const
{
	return m_contactBreakingThreshold;
}

void btPersistentManifold::refreshContactPoints(const btTransform& trA, const btTransform& trB)
{
	int i;
#ifdef DEBUG_PERSISTENCY
	printf("refreshContactPoints posA = (%f,%f,%f) posB = (%f,%f,%f)\n",
		   trA.getOrigin().getX(),
		   trA.getOrigin().getY(),
		   trA.getOrigin().getZ(),
		   trB.getOrigin().getX(),
		   trB.getOrigin().getY(),
		   trB.getOrigin().getZ());
#endif  //DEBUG_PERSISTENCY
	/// first refresh worldspace positions and distance
	for (i = getNumContacts() - 1; i >= 0; i--)
	{
		btManifoldPoint& manifoldPoint = m_pointCache[i];
		manifoldPoint.m_positionWorldOnA = trA(manifoldPoint.m_localPointA);
		manifoldPoint.m_positionWorldOnB = trB(manifoldPoint.m_localPointB);
		manifoldPoint.m_distance1 = (manifoldPoint.m_positionWorldOnA - manifoldPoint.m_positionWorldOnB).dot(manifoldPoint.m_normalWorldOnB);
		manifoldPoint.m_lifeTime++;
	}

	/// then
	btScalar distance2d;
	btVector3 projectedDifference, projectedPoint;
	for (i = getNumContacts() - 1; i >= 0; i--)
	{
		btManifoldPoint& manifoldPoint = m_pointCache[i];
		//contact becomes invalid when signed distance exceeds margin (projected on contactnormal direction)
		if (!validContactDistance(manifoldPoint))
		{
			removeContactPoint(i);
		}
		else
		{
			//todo: friction anchor may require the contact to be around a bit longer
			//contact also becomes invalid when relative movement orthogonal to normal exceeds margin
			projectedPoint = manifoldPoint.m_positionWorldOnA - manifoldPoint.m_normalWorldOnB * manifoldPoint.m_distance1;
			projectedDifference = manifoldPoint.m_positionWorldOnB - projectedPoint;
			distance2d = projectedDifference.dot(projectedDifference);
			if (distance2d > getContactBreakingThreshold() * getContactBreakingThreshold())
			{
				removeContactPoint(i);
			}
			else
			{
				//contact point processed callback
				if (gContactProcessedCallback)
					(*gContactProcessedCallback)(manifoldPoint, (void*)m_body0, (void*)m_body1);
			}
		}
	}
#ifdef DEBUG_PERSISTENCY
	DebugPersistency();
#endif  //
}

int btPersistentManifold::calculateSerializeBufferSize() const
{
	return sizeof(btPersistentManifoldData);
}

const char* btPersistentManifold::serialize(const class btPersistentManifold* manifold, void* dataBuffer, class btSerializer* serializer) const
{
	btPersistentManifoldData* dataOut = (btPersistentManifoldData*)dataBuffer;
	memset(dataOut, 0, sizeof(btPersistentManifoldData));

	dataOut->m_body0 = (btCollisionObjectData*)serializer->getUniquePointer((void*)manifold->getBody0());
	dataOut->m_body1 = (btCollisionObjectData*)serializer->getUniquePointer((void*)manifold->getBody1());
	dataOut->m_contactBreakingThreshold = manifold->getContactBreakingThreshold();
	dataOut->m_contactProcessingThreshold = manifold->getContactProcessingThreshold();
	dataOut->m_numCachedPoints = manifold->getNumContacts();
	dataOut->m_companionIdA = manifold->m_companionIdA;
	dataOut->m_companionIdB = manifold->m_companionIdB;
	dataOut->m_index1a = manifold->m_index1a;
	dataOut->m_objectType = manifold->m_objectType;

	for (int i = 0; i < this->getNumContacts(); i++)
	{
		const btManifoldPoint& pt = manifold->getContactPoint(i);
		dataOut->m_pointCacheAppliedImpulse[i] = pt.m_appliedImpulse;
		dataOut->m_pointCacheAppliedImpulseLateral1[i] = pt.m_appliedImpulseLateral1;
		dataOut->m_pointCacheAppliedImpulseLateral2[i] = pt.m_appliedImpulseLateral2;
		pt.m_localPointA.serialize(dataOut->m_pointCacheLocalPointA[i]);
		pt.m_localPointB.serialize(dataOut->m_pointCacheLocalPointB[i]);
		pt.m_normalWorldOnB.serialize(dataOut->m_pointCacheNormalWorldOnB[i]);
		dataOut->m_pointCacheDistance[i] = pt.m_distance1;
		dataOut->m_pointCacheCombinedContactDamping1[i] = pt.m_combinedContactDamping1;
		dataOut->m_pointCacheCombinedContactStiffness1[i] = pt.m_combinedContactStiffness1;
		dataOut->m_pointCacheLifeTime[i] = pt.m_lifeTime;
		dataOut->m_pointCacheFrictionCFM[i] = pt.m_frictionCFM;
		dataOut->m_pointCacheContactERP[i] = pt.m_contactERP;
		dataOut->m_pointCacheContactCFM[i] = pt.m_contactCFM;
		dataOut->m_pointCacheContactPointFlags[i] = pt.m_contactPointFlags;
		dataOut->m_pointCacheIndex0[i] = pt.m_index0;
		dataOut->m_pointCacheIndex1[i] = pt.m_index1;
		dataOut->m_pointCachePartId0[i] = pt.m_partId0;
		dataOut->m_pointCachePartId1[i] = pt.m_partId1;
		pt.m_positionWorldOnA.serialize(dataOut->m_pointCachePositionWorldOnA[i]);
		pt.m_positionWorldOnB.serialize(dataOut->m_pointCachePositionWorldOnB[i]);
		dataOut->m_pointCacheCombinedFriction[i] = pt.m_combinedFriction;
		pt.m_lateralFrictionDir1.serialize(dataOut->m_pointCacheLateralFrictionDir1[i]);
		pt.m_lateralFrictionDir2.serialize(dataOut->m_pointCacheLateralFrictionDir2[i]);
		dataOut->m_pointCacheCombinedRollingFriction[i] = pt.m_combinedRollingFriction;
		dataOut->m_pointCacheCombinedSpinningFriction[i] = pt.m_combinedSpinningFriction;
		dataOut->m_pointCacheCombinedRestitution[i] = pt.m_combinedRestitution;
		dataOut->m_pointCacheContactMotion1[i] = pt.m_contactMotion1;
		dataOut->m_pointCacheContactMotion2[i] = pt.m_contactMotion2;
	}
	return btPersistentManifoldDataName;
}

void btPersistentManifold::deSerialize(const struct btPersistentManifoldDoubleData* manifoldDataPtr)
{
	m_contactBreakingThreshold = manifoldDataPtr->m_contactBreakingThreshold;
	m_contactProcessingThreshold = manifoldDataPtr->m_contactProcessingThreshold;
	m_cachedPoints = manifoldDataPtr->m_numCachedPoints;
	m_companionIdA = manifoldDataPtr->m_companionIdA;
	m_companionIdB = manifoldDataPtr->m_companionIdB;
	//m_index1a = manifoldDataPtr->m_index1a;
	m_objectType = manifoldDataPtr->m_objectType;

	for (int i = 0; i < this->getNumContacts(); i++)
	{
		btManifoldPoint& pt = m_pointCache[i];

		pt.m_appliedImpulse = manifoldDataPtr->m_pointCacheAppliedImpulse[i];
		pt.m_appliedImpulseLateral1 = manifoldDataPtr->m_pointCacheAppliedImpulseLateral1[i];
		pt.m_appliedImpulseLateral2 = manifoldDataPtr->m_pointCacheAppliedImpulseLateral2[i];
		pt.m_localPointA.deSerializeDouble(manifoldDataPtr->m_pointCacheLocalPointA[i]);
		pt.m_localPointB.deSerializeDouble(manifoldDataPtr->m_pointCacheLocalPointB[i]);
		pt.m_normalWorldOnB.deSerializeDouble(manifoldDataPtr->m_pointCacheNormalWorldOnB[i]);
		pt.m_distance1 = manifoldDataPtr->m_pointCacheDistance[i];
		pt.m_combinedContactDamping1 = manifoldDataPtr->m_pointCacheCombinedContactDamping1[i];
		pt.m_combinedContactStiffness1 = manifoldDataPtr->m_pointCacheCombinedContactStiffness1[i];
		pt.m_lifeTime = manifoldDataPtr->m_pointCacheLifeTime[i];
		pt.m_frictionCFM = manifoldDataPtr->m_pointCacheFrictionCFM[i];
		pt.m_contactERP = manifoldDataPtr->m_pointCacheContactERP[i];
		pt.m_contactCFM = manifoldDataPtr->m_pointCacheContactCFM[i];
		pt.m_contactPointFlags = manifoldDataPtr->m_pointCacheContactPointFlags[i];
		pt.m_index0 = manifoldDataPtr->m_pointCacheIndex0[i];
		pt.m_index1 = manifoldDataPtr->m_pointCacheIndex1[i];
		pt.m_partId0 = manifoldDataPtr->m_pointCachePartId0[i];
		pt.m_partId1 = manifoldDataPtr->m_pointCachePartId1[i];
		pt.m_positionWorldOnA.deSerializeDouble(manifoldDataPtr->m_pointCachePositionWorldOnA[i]);
		pt.m_positionWorldOnB.deSerializeDouble(manifoldDataPtr->m_pointCachePositionWorldOnB[i]);
		pt.m_combinedFriction = manifoldDataPtr->m_pointCacheCombinedFriction[i];
		pt.m_lateralFrictionDir1.deSerializeDouble(manifoldDataPtr->m_pointCacheLateralFrictionDir1[i]);
		pt.m_lateralFrictionDir2.deSerializeDouble(manifoldDataPtr->m_pointCacheLateralFrictionDir2[i]);
		pt.m_combinedRollingFriction = manifoldDataPtr->m_pointCacheCombinedRollingFriction[i];
		pt.m_combinedSpinningFriction = manifoldDataPtr->m_pointCacheCombinedSpinningFriction[i];
		pt.m_combinedRestitution = manifoldDataPtr->m_pointCacheCombinedRestitution[i];
		pt.m_contactMotion1 = manifoldDataPtr->m_pointCacheContactMotion1[i];
		pt.m_contactMotion2 = manifoldDataPtr->m_pointCacheContactMotion2[i];
	}
}

void btPersistentManifold::deSerialize(const struct btPersistentManifoldFloatData* manifoldDataPtr)
{
	m_contactBreakingThreshold = manifoldDataPtr->m_contactBreakingThreshold;
	m_contactProcessingThreshold = manifoldDataPtr->m_contactProcessingThreshold;
	m_cachedPoints = manifoldDataPtr->m_numCachedPoints;
	m_companionIdA = manifoldDataPtr->m_companionIdA;
	m_companionIdB = manifoldDataPtr->m_companionIdB;
	//m_index1a = manifoldDataPtr->m_index1a;
	m_objectType = manifoldDataPtr->m_objectType;

	for (int i = 0; i < this->getNumContacts(); i++)
	{
		btManifoldPoint& pt = m_pointCache[i];

		pt.m_appliedImpulse = manifoldDataPtr->m_pointCacheAppliedImpulse[i];
		pt.m_appliedImpulseLateral1 = manifoldDataPtr->m_pointCacheAppliedImpulseLateral1[i];
		pt.m_appliedImpulseLateral2 = manifoldDataPtr->m_pointCacheAppliedImpulseLateral2[i];
		pt.m_localPointA.deSerialize(manifoldDataPtr->m_pointCacheLocalPointA[i]);
		pt.m_localPointB.deSerialize(manifoldDataPtr->m_pointCacheLocalPointB[i]);
		pt.m_normalWorldOnB.deSerialize(manifoldDataPtr->m_pointCacheNormalWorldOnB[i]);
		pt.m_distance1 = manifoldDataPtr->m_pointCacheDistance[i];
		pt.m_combinedContactDamping1 = manifoldDataPtr->m_pointCacheCombinedContactDamping1[i];
		pt.m_combinedContactStiffness1 = manifoldDataPtr->m_pointCacheCombinedContactStiffness1[i];
		pt.m_lifeTime = manifoldDataPtr->m_pointCacheLifeTime[i];
		pt.m_frictionCFM = manifoldDataPtr->m_pointCacheFrictionCFM[i];
		pt.m_contactERP = manifoldDataPtr->m_pointCacheContactERP[i];
		pt.m_contactCFM = manifoldDataPtr->m_pointCacheContactCFM[i];
		pt.m_contactPointFlags = manifoldDataPtr->m_pointCacheContactPointFlags[i];
		pt.m_index0 = manifoldDataPtr->m_pointCacheIndex0[i];
		pt.m_index1 = manifoldDataPtr->m_pointCacheIndex1[i];
		pt.m_partId0 = manifoldDataPtr->m_pointCachePartId0[i];
		pt.m_partId1 = manifoldDataPtr->m_pointCachePartId1[i];
		pt.m_positionWorldOnA.deSerialize(manifoldDataPtr->m_pointCachePositionWorldOnA[i]);
		pt.m_positionWorldOnB.deSerialize(manifoldDataPtr->m_pointCachePositionWorldOnB[i]);
		pt.m_combinedFriction = manifoldDataPtr->m_pointCacheCombinedFriction[i];
		pt.m_lateralFrictionDir1.deSerialize(manifoldDataPtr->m_pointCacheLateralFrictionDir1[i]);
		pt.m_lateralFrictionDir2.deSerialize(manifoldDataPtr->m_pointCacheLateralFrictionDir2[i]);
		pt.m_combinedRollingFriction = manifoldDataPtr->m_pointCacheCombinedRollingFriction[i];
		pt.m_combinedSpinningFriction = manifoldDataPtr->m_pointCacheCombinedSpinningFriction[i];
		pt.m_combinedRestitution = manifoldDataPtr->m_pointCacheCombinedRestitution[i];
		pt.m_contactMotion1 = manifoldDataPtr->m_pointCacheContactMotion1[i];
		pt.m_contactMotion2 = manifoldDataPtr->m_pointCacheContactMotion2[i];
	}
}