summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletCollision/NarrowPhaseCollision/btMprPenetration.h
blob: 534a66d3fa301ce1616831841e52c54446353fa6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884

/***
 * ---------------------------------
 * Copyright (c)2012 Daniel Fiser <danfis@danfis.cz>
 *
 *  This file was ported from mpr.c file, part of libccd.
 *  The Minkoski Portal Refinement implementation was ported 
 *  to OpenCL by Erwin Coumans for the Bullet 3 Physics library.
 *  The original MPR idea and implementation is by Gary Snethen
 *  in XenoCollide, see http://github.com/erwincoumans/xenocollide
 *
 *  Distributed under the OSI-approved BSD License (the "License");
 *  see <http://www.opensource.org/licenses/bsd-license.php>.
 *  This software is distributed WITHOUT ANY WARRANTY; without even the
 *  implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 *  See the License for more information.
 */

///2014 Oct, Erwin Coumans, Use templates to avoid void* casts

#ifndef BT_MPR_PENETRATION_H
#define BT_MPR_PENETRATION_H

#define BT_DEBUG_MPR1

#include "LinearMath/btTransform.h"
#include "LinearMath/btAlignedObjectArray.h"

//#define MPR_AVERAGE_CONTACT_POSITIONS

struct btMprCollisionDescription
{
	btVector3 m_firstDir;
	int m_maxGjkIterations;
	btScalar m_maximumDistanceSquared;
	btScalar m_gjkRelError2;

	btMprCollisionDescription()
		: m_firstDir(0, 1, 0),
		  m_maxGjkIterations(1000),
		  m_maximumDistanceSquared(1e30f),
		  m_gjkRelError2(1.0e-6)
	{
	}
	virtual ~btMprCollisionDescription()
	{
	}
};

struct btMprDistanceInfo
{
	btVector3 m_pointOnA;
	btVector3 m_pointOnB;
	btVector3 m_normalBtoA;
	btScalar m_distance;
};

#ifdef __cplusplus
#define BT_MPR_SQRT sqrtf
#else
#define BT_MPR_SQRT sqrt
#endif
#define BT_MPR_FMIN(x, y) ((x) < (y) ? (x) : (y))
#define BT_MPR_FABS fabs

#define BT_MPR_TOLERANCE 1E-6f
#define BT_MPR_MAX_ITERATIONS 1000

struct _btMprSupport_t
{
	btVector3 v;   //!< Support point in minkowski sum
	btVector3 v1;  //!< Support point in obj1
	btVector3 v2;  //!< Support point in obj2
};
typedef struct _btMprSupport_t btMprSupport_t;

struct _btMprSimplex_t
{
	btMprSupport_t ps[4];
	int last;  //!< index of last added point
};
typedef struct _btMprSimplex_t btMprSimplex_t;

inline btMprSupport_t *btMprSimplexPointW(btMprSimplex_t *s, int idx)
{
	return &s->ps[idx];
}

inline void btMprSimplexSetSize(btMprSimplex_t *s, int size)
{
	s->last = size - 1;
}

#ifdef DEBUG_MPR
inline void btPrintPortalVertex(_btMprSimplex_t *portal, int index)
{
	printf("portal[%d].v = %f,%f,%f, v1=%f,%f,%f, v2=%f,%f,%f\n", index, portal->ps[index].v.x(), portal->ps[index].v.y(), portal->ps[index].v.z(),
		   portal->ps[index].v1.x(), portal->ps[index].v1.y(), portal->ps[index].v1.z(),
		   portal->ps[index].v2.x(), portal->ps[index].v2.y(), portal->ps[index].v2.z());
}
#endif  //DEBUG_MPR

inline int btMprSimplexSize(const btMprSimplex_t *s)
{
	return s->last + 1;
}

inline const btMprSupport_t *btMprSimplexPoint(const btMprSimplex_t *s, int idx)
{
	// here is no check on boundaries
	return &s->ps[idx];
}

inline void btMprSupportCopy(btMprSupport_t *d, const btMprSupport_t *s)
{
	*d = *s;
}

inline void btMprSimplexSet(btMprSimplex_t *s, size_t pos, const btMprSupport_t *a)
{
	btMprSupportCopy(s->ps + pos, a);
}

inline void btMprSimplexSwap(btMprSimplex_t *s, size_t pos1, size_t pos2)
{
	btMprSupport_t supp;

	btMprSupportCopy(&supp, &s->ps[pos1]);
	btMprSupportCopy(&s->ps[pos1], &s->ps[pos2]);
	btMprSupportCopy(&s->ps[pos2], &supp);
}

inline int btMprIsZero(float val)
{
	return BT_MPR_FABS(val) < FLT_EPSILON;
}

inline int btMprEq(float _a, float _b)
{
	float ab;
	float a, b;

	ab = BT_MPR_FABS(_a - _b);
	if (BT_MPR_FABS(ab) < FLT_EPSILON)
		return 1;

	a = BT_MPR_FABS(_a);
	b = BT_MPR_FABS(_b);
	if (b > a)
	{
		return ab < FLT_EPSILON * b;
	}
	else
	{
		return ab < FLT_EPSILON * a;
	}
}

inline int btMprVec3Eq(const btVector3 *a, const btVector3 *b)
{
	return btMprEq((*a).x(), (*b).x()) && btMprEq((*a).y(), (*b).y()) && btMprEq((*a).z(), (*b).z());
}

template <typename btConvexTemplate>
inline void btFindOrigin(const btConvexTemplate &a, const btConvexTemplate &b, const btMprCollisionDescription &colDesc, btMprSupport_t *center)
{
	center->v1 = a.getObjectCenterInWorld();
	center->v2 = b.getObjectCenterInWorld();
	center->v = center->v1 - center->v2;
}

inline void btMprVec3Set(btVector3 *v, float x, float y, float z)
{
	v->setValue(x, y, z);
}

inline void btMprVec3Add(btVector3 *v, const btVector3 *w)
{
	*v += *w;
}

inline void btMprVec3Copy(btVector3 *v, const btVector3 *w)
{
	*v = *w;
}

inline void btMprVec3Scale(btVector3 *d, float k)
{
	*d *= k;
}

inline float btMprVec3Dot(const btVector3 *a, const btVector3 *b)
{
	float dot;

	dot = btDot(*a, *b);
	return dot;
}

inline float btMprVec3Len2(const btVector3 *v)
{
	return btMprVec3Dot(v, v);
}

inline void btMprVec3Normalize(btVector3 *d)
{
	float k = 1.f / BT_MPR_SQRT(btMprVec3Len2(d));
	btMprVec3Scale(d, k);
}

inline void btMprVec3Cross(btVector3 *d, const btVector3 *a, const btVector3 *b)
{
	*d = btCross(*a, *b);
}

inline void btMprVec3Sub2(btVector3 *d, const btVector3 *v, const btVector3 *w)
{
	*d = *v - *w;
}

inline void btPortalDir(const btMprSimplex_t *portal, btVector3 *dir)
{
	btVector3 v2v1, v3v1;

	btMprVec3Sub2(&v2v1, &btMprSimplexPoint(portal, 2)->v,
				  &btMprSimplexPoint(portal, 1)->v);
	btMprVec3Sub2(&v3v1, &btMprSimplexPoint(portal, 3)->v,
				  &btMprSimplexPoint(portal, 1)->v);
	btMprVec3Cross(dir, &v2v1, &v3v1);
	btMprVec3Normalize(dir);
}

inline int portalEncapsulesOrigin(const btMprSimplex_t *portal,
								  const btVector3 *dir)
{
	float dot;
	dot = btMprVec3Dot(dir, &btMprSimplexPoint(portal, 1)->v);
	return btMprIsZero(dot) || dot > 0.f;
}

inline int portalReachTolerance(const btMprSimplex_t *portal,
								const btMprSupport_t *v4,
								const btVector3 *dir)
{
	float dv1, dv2, dv3, dv4;
	float dot1, dot2, dot3;

	// find the smallest dot product of dir and {v1-v4, v2-v4, v3-v4}

	dv1 = btMprVec3Dot(&btMprSimplexPoint(portal, 1)->v, dir);
	dv2 = btMprVec3Dot(&btMprSimplexPoint(portal, 2)->v, dir);
	dv3 = btMprVec3Dot(&btMprSimplexPoint(portal, 3)->v, dir);
	dv4 = btMprVec3Dot(&v4->v, dir);

	dot1 = dv4 - dv1;
	dot2 = dv4 - dv2;
	dot3 = dv4 - dv3;

	dot1 = BT_MPR_FMIN(dot1, dot2);
	dot1 = BT_MPR_FMIN(dot1, dot3);

	return btMprEq(dot1, BT_MPR_TOLERANCE) || dot1 < BT_MPR_TOLERANCE;
}

inline int portalCanEncapsuleOrigin(const btMprSimplex_t *portal,
									const btMprSupport_t *v4,
									const btVector3 *dir)
{
	float dot;
	dot = btMprVec3Dot(&v4->v, dir);
	return btMprIsZero(dot) || dot > 0.f;
}

inline void btExpandPortal(btMprSimplex_t *portal,
						   const btMprSupport_t *v4)
{
	float dot;
	btVector3 v4v0;

	btMprVec3Cross(&v4v0, &v4->v, &btMprSimplexPoint(portal, 0)->v);
	dot = btMprVec3Dot(&btMprSimplexPoint(portal, 1)->v, &v4v0);
	if (dot > 0.f)
	{
		dot = btMprVec3Dot(&btMprSimplexPoint(portal, 2)->v, &v4v0);
		if (dot > 0.f)
		{
			btMprSimplexSet(portal, 1, v4);
		}
		else
		{
			btMprSimplexSet(portal, 3, v4);
		}
	}
	else
	{
		dot = btMprVec3Dot(&btMprSimplexPoint(portal, 3)->v, &v4v0);
		if (dot > 0.f)
		{
			btMprSimplexSet(portal, 2, v4);
		}
		else
		{
			btMprSimplexSet(portal, 1, v4);
		}
	}
}
template <typename btConvexTemplate>
inline void btMprSupport(const btConvexTemplate &a, const btConvexTemplate &b,
						 const btMprCollisionDescription &colDesc,
						 const btVector3 &dir, btMprSupport_t *supp)
{
	btVector3 separatingAxisInA = dir * a.getWorldTransform().getBasis();
	btVector3 separatingAxisInB = -dir * b.getWorldTransform().getBasis();

	btVector3 pInA = a.getLocalSupportWithMargin(separatingAxisInA);
	btVector3 qInB = b.getLocalSupportWithMargin(separatingAxisInB);

	supp->v1 = a.getWorldTransform()(pInA);
	supp->v2 = b.getWorldTransform()(qInB);
	supp->v = supp->v1 - supp->v2;
}

template <typename btConvexTemplate>
static int btDiscoverPortal(const btConvexTemplate &a, const btConvexTemplate &b,
							const btMprCollisionDescription &colDesc,
							btMprSimplex_t *portal)
{
	btVector3 dir, va, vb;
	float dot;
	int cont;

	// vertex 0 is center of portal
	btFindOrigin(a, b, colDesc, btMprSimplexPointW(portal, 0));

	// vertex 0 is center of portal
	btMprSimplexSetSize(portal, 1);

	btVector3 zero = btVector3(0, 0, 0);
	btVector3 *org = &zero;

	if (btMprVec3Eq(&btMprSimplexPoint(portal, 0)->v, org))
	{
		// Portal's center lies on origin (0,0,0) => we know that objects
		// intersect but we would need to know penetration info.
		// So move center little bit...
		btMprVec3Set(&va, FLT_EPSILON * 10.f, 0.f, 0.f);
		btMprVec3Add(&btMprSimplexPointW(portal, 0)->v, &va);
	}

	// vertex 1 = support in direction of origin
	btMprVec3Copy(&dir, &btMprSimplexPoint(portal, 0)->v);
	btMprVec3Scale(&dir, -1.f);
	btMprVec3Normalize(&dir);

	btMprSupport(a, b, colDesc, dir, btMprSimplexPointW(portal, 1));

	btMprSimplexSetSize(portal, 2);

	// test if origin isn't outside of v1
	dot = btMprVec3Dot(&btMprSimplexPoint(portal, 1)->v, &dir);

	if (btMprIsZero(dot) || dot < 0.f)
		return -1;

	// vertex 2
	btMprVec3Cross(&dir, &btMprSimplexPoint(portal, 0)->v,
				   &btMprSimplexPoint(portal, 1)->v);
	if (btMprIsZero(btMprVec3Len2(&dir)))
	{
		if (btMprVec3Eq(&btMprSimplexPoint(portal, 1)->v, org))
		{
			// origin lies on v1
			return 1;
		}
		else
		{
			// origin lies on v0-v1 segment
			return 2;
		}
	}

	btMprVec3Normalize(&dir);
	btMprSupport(a, b, colDesc, dir, btMprSimplexPointW(portal, 2));

	dot = btMprVec3Dot(&btMprSimplexPoint(portal, 2)->v, &dir);
	if (btMprIsZero(dot) || dot < 0.f)
		return -1;

	btMprSimplexSetSize(portal, 3);

	// vertex 3 direction
	btMprVec3Sub2(&va, &btMprSimplexPoint(portal, 1)->v,
				  &btMprSimplexPoint(portal, 0)->v);
	btMprVec3Sub2(&vb, &btMprSimplexPoint(portal, 2)->v,
				  &btMprSimplexPoint(portal, 0)->v);
	btMprVec3Cross(&dir, &va, &vb);
	btMprVec3Normalize(&dir);

	// it is better to form portal faces to be oriented "outside" origin
	dot = btMprVec3Dot(&dir, &btMprSimplexPoint(portal, 0)->v);
	if (dot > 0.f)
	{
		btMprSimplexSwap(portal, 1, 2);
		btMprVec3Scale(&dir, -1.f);
	}

	while (btMprSimplexSize(portal) < 4)
	{
		btMprSupport(a, b, colDesc, dir, btMprSimplexPointW(portal, 3));

		dot = btMprVec3Dot(&btMprSimplexPoint(portal, 3)->v, &dir);
		if (btMprIsZero(dot) || dot < 0.f)
			return -1;

		cont = 0;

		// test if origin is outside (v1, v0, v3) - set v2 as v3 and
		// continue
		btMprVec3Cross(&va, &btMprSimplexPoint(portal, 1)->v,
					   &btMprSimplexPoint(portal, 3)->v);
		dot = btMprVec3Dot(&va, &btMprSimplexPoint(portal, 0)->v);
		if (dot < 0.f && !btMprIsZero(dot))
		{
			btMprSimplexSet(portal, 2, btMprSimplexPoint(portal, 3));
			cont = 1;
		}

		if (!cont)
		{
			// test if origin is outside (v3, v0, v2) - set v1 as v3 and
			// continue
			btMprVec3Cross(&va, &btMprSimplexPoint(portal, 3)->v,
						   &btMprSimplexPoint(portal, 2)->v);
			dot = btMprVec3Dot(&va, &btMprSimplexPoint(portal, 0)->v);
			if (dot < 0.f && !btMprIsZero(dot))
			{
				btMprSimplexSet(portal, 1, btMprSimplexPoint(portal, 3));
				cont = 1;
			}
		}

		if (cont)
		{
			btMprVec3Sub2(&va, &btMprSimplexPoint(portal, 1)->v,
						  &btMprSimplexPoint(portal, 0)->v);
			btMprVec3Sub2(&vb, &btMprSimplexPoint(portal, 2)->v,
						  &btMprSimplexPoint(portal, 0)->v);
			btMprVec3Cross(&dir, &va, &vb);
			btMprVec3Normalize(&dir);
		}
		else
		{
			btMprSimplexSetSize(portal, 4);
		}
	}

	return 0;
}

template <typename btConvexTemplate>
static int btRefinePortal(const btConvexTemplate &a, const btConvexTemplate &b, const btMprCollisionDescription &colDesc,
						  btMprSimplex_t *portal)
{
	btVector3 dir;
	btMprSupport_t v4;

	for (int i = 0; i < BT_MPR_MAX_ITERATIONS; i++)
	//while (1)
	{
		// compute direction outside the portal (from v0 through v1,v2,v3
		// face)
		btPortalDir(portal, &dir);

		// test if origin is inside the portal
		if (portalEncapsulesOrigin(portal, &dir))
			return 0;

		// get next support point

		btMprSupport(a, b, colDesc, dir, &v4);

		// test if v4 can expand portal to contain origin and if portal
		// expanding doesn't reach given tolerance
		if (!portalCanEncapsuleOrigin(portal, &v4, &dir) || portalReachTolerance(portal, &v4, &dir))
		{
			return -1;
		}

		// v1-v2-v3 triangle must be rearranged to face outside Minkowski
		// difference (direction from v0).
		btExpandPortal(portal, &v4);
	}

	return -1;
}

static void btFindPos(const btMprSimplex_t *portal, btVector3 *pos)
{
	btVector3 zero = btVector3(0, 0, 0);
	btVector3 *origin = &zero;

	btVector3 dir;
	size_t i;
	float b[4], sum, inv;
	btVector3 vec, p1, p2;

	btPortalDir(portal, &dir);

	// use barycentric coordinates of tetrahedron to find origin
	btMprVec3Cross(&vec, &btMprSimplexPoint(portal, 1)->v,
				   &btMprSimplexPoint(portal, 2)->v);
	b[0] = btMprVec3Dot(&vec, &btMprSimplexPoint(portal, 3)->v);

	btMprVec3Cross(&vec, &btMprSimplexPoint(portal, 3)->v,
				   &btMprSimplexPoint(portal, 2)->v);
	b[1] = btMprVec3Dot(&vec, &btMprSimplexPoint(portal, 0)->v);

	btMprVec3Cross(&vec, &btMprSimplexPoint(portal, 0)->v,
				   &btMprSimplexPoint(portal, 1)->v);
	b[2] = btMprVec3Dot(&vec, &btMprSimplexPoint(portal, 3)->v);

	btMprVec3Cross(&vec, &btMprSimplexPoint(portal, 2)->v,
				   &btMprSimplexPoint(portal, 1)->v);
	b[3] = btMprVec3Dot(&vec, &btMprSimplexPoint(portal, 0)->v);

	sum = b[0] + b[1] + b[2] + b[3];

	if (btMprIsZero(sum) || sum < 0.f)
	{
		b[0] = 0.f;

		btMprVec3Cross(&vec, &btMprSimplexPoint(portal, 2)->v,
					   &btMprSimplexPoint(portal, 3)->v);
		b[1] = btMprVec3Dot(&vec, &dir);
		btMprVec3Cross(&vec, &btMprSimplexPoint(portal, 3)->v,
					   &btMprSimplexPoint(portal, 1)->v);
		b[2] = btMprVec3Dot(&vec, &dir);
		btMprVec3Cross(&vec, &btMprSimplexPoint(portal, 1)->v,
					   &btMprSimplexPoint(portal, 2)->v);
		b[3] = btMprVec3Dot(&vec, &dir);

		sum = b[1] + b[2] + b[3];
	}

	inv = 1.f / sum;

	btMprVec3Copy(&p1, origin);
	btMprVec3Copy(&p2, origin);
	for (i = 0; i < 4; i++)
	{
		btMprVec3Copy(&vec, &btMprSimplexPoint(portal, i)->v1);
		btMprVec3Scale(&vec, b[i]);
		btMprVec3Add(&p1, &vec);

		btMprVec3Copy(&vec, &btMprSimplexPoint(portal, i)->v2);
		btMprVec3Scale(&vec, b[i]);
		btMprVec3Add(&p2, &vec);
	}
	btMprVec3Scale(&p1, inv);
	btMprVec3Scale(&p2, inv);
#ifdef MPR_AVERAGE_CONTACT_POSITIONS
	btMprVec3Copy(pos, &p1);
	btMprVec3Add(pos, &p2);
	btMprVec3Scale(pos, 0.5);
#else
	btMprVec3Copy(pos, &p2);
#endif  //MPR_AVERAGE_CONTACT_POSITIONS
}

inline float btMprVec3Dist2(const btVector3 *a, const btVector3 *b)
{
	btVector3 ab;
	btMprVec3Sub2(&ab, a, b);
	return btMprVec3Len2(&ab);
}

inline float _btMprVec3PointSegmentDist2(const btVector3 *P,
										 const btVector3 *x0,
										 const btVector3 *b,
										 btVector3 *witness)
{
	// The computation comes from solving equation of segment:
	//      S(t) = x0 + t.d
	//          where - x0 is initial point of segment
	//                - d is direction of segment from x0 (|d| > 0)
	//                - t belongs to <0, 1> interval
	//
	// Than, distance from a segment to some point P can be expressed:
	//      D(t) = |x0 + t.d - P|^2
	//          which is distance from any point on segment. Minimization
	//          of this function brings distance from P to segment.
	// Minimization of D(t) leads to simple quadratic equation that's
	// solving is straightforward.
	//
	// Bonus of this method is witness point for free.

	float dist, t;
	btVector3 d, a;

	// direction of segment
	btMprVec3Sub2(&d, b, x0);

	// precompute vector from P to x0
	btMprVec3Sub2(&a, x0, P);

	t = -1.f * btMprVec3Dot(&a, &d);
	t /= btMprVec3Len2(&d);

	if (t < 0.f || btMprIsZero(t))
	{
		dist = btMprVec3Dist2(x0, P);
		if (witness)
			btMprVec3Copy(witness, x0);
	}
	else if (t > 1.f || btMprEq(t, 1.f))
	{
		dist = btMprVec3Dist2(b, P);
		if (witness)
			btMprVec3Copy(witness, b);
	}
	else
	{
		if (witness)
		{
			btMprVec3Copy(witness, &d);
			btMprVec3Scale(witness, t);
			btMprVec3Add(witness, x0);
			dist = btMprVec3Dist2(witness, P);
		}
		else
		{
			// recycling variables
			btMprVec3Scale(&d, t);
			btMprVec3Add(&d, &a);
			dist = btMprVec3Len2(&d);
		}
	}

	return dist;
}

inline float btMprVec3PointTriDist2(const btVector3 *P,
									const btVector3 *x0, const btVector3 *B,
									const btVector3 *C,
									btVector3 *witness)
{
	// Computation comes from analytic expression for triangle (x0, B, C)
	//      T(s, t) = x0 + s.d1 + t.d2, where d1 = B - x0 and d2 = C - x0 and
	// Then equation for distance is:
	//      D(s, t) = | T(s, t) - P |^2
	// This leads to minimization of quadratic function of two variables.
	// The solution from is taken only if s is between 0 and 1, t is
	// between 0 and 1 and t + s < 1, otherwise distance from segment is
	// computed.

	btVector3 d1, d2, a;
	float u, v, w, p, q, r;
	float s, t, dist, dist2;
	btVector3 witness2;

	btMprVec3Sub2(&d1, B, x0);
	btMprVec3Sub2(&d2, C, x0);
	btMprVec3Sub2(&a, x0, P);

	u = btMprVec3Dot(&a, &a);
	v = btMprVec3Dot(&d1, &d1);
	w = btMprVec3Dot(&d2, &d2);
	p = btMprVec3Dot(&a, &d1);
	q = btMprVec3Dot(&a, &d2);
	r = btMprVec3Dot(&d1, &d2);

	btScalar div = (w * v - r * r);
	if (btMprIsZero(div))
	{
		s = -1;
	}
	else
	{
		s = (q * r - w * p) / div;
		t = (-s * r - q) / w;
	}

	if ((btMprIsZero(s) || s > 0.f) && (btMprEq(s, 1.f) || s < 1.f) && (btMprIsZero(t) || t > 0.f) && (btMprEq(t, 1.f) || t < 1.f) && (btMprEq(t + s, 1.f) || t + s < 1.f))
	{
		if (witness)
		{
			btMprVec3Scale(&d1, s);
			btMprVec3Scale(&d2, t);
			btMprVec3Copy(witness, x0);
			btMprVec3Add(witness, &d1);
			btMprVec3Add(witness, &d2);

			dist = btMprVec3Dist2(witness, P);
		}
		else
		{
			dist = s * s * v;
			dist += t * t * w;
			dist += 2.f * s * t * r;
			dist += 2.f * s * p;
			dist += 2.f * t * q;
			dist += u;
		}
	}
	else
	{
		dist = _btMprVec3PointSegmentDist2(P, x0, B, witness);

		dist2 = _btMprVec3PointSegmentDist2(P, x0, C, &witness2);
		if (dist2 < dist)
		{
			dist = dist2;
			if (witness)
				btMprVec3Copy(witness, &witness2);
		}

		dist2 = _btMprVec3PointSegmentDist2(P, B, C, &witness2);
		if (dist2 < dist)
		{
			dist = dist2;
			if (witness)
				btMprVec3Copy(witness, &witness2);
		}
	}

	return dist;
}

template <typename btConvexTemplate>
static void btFindPenetr(const btConvexTemplate &a, const btConvexTemplate &b,
						 const btMprCollisionDescription &colDesc,
						 btMprSimplex_t *portal,
						 float *depth, btVector3 *pdir, btVector3 *pos)
{
	btVector3 dir;
	btMprSupport_t v4;
	unsigned long iterations;

	btVector3 zero = btVector3(0, 0, 0);
	btVector3 *origin = &zero;

	iterations = 1UL;
	for (int i = 0; i < BT_MPR_MAX_ITERATIONS; i++)
	//while (1)
	{
		// compute portal direction and obtain next support point
		btPortalDir(portal, &dir);

		btMprSupport(a, b, colDesc, dir, &v4);

		// reached tolerance -> find penetration info
		if (portalReachTolerance(portal, &v4, &dir) || iterations == BT_MPR_MAX_ITERATIONS)
		{
			*depth = btMprVec3PointTriDist2(origin, &btMprSimplexPoint(portal, 1)->v, &btMprSimplexPoint(portal, 2)->v, &btMprSimplexPoint(portal, 3)->v, pdir);
			*depth = BT_MPR_SQRT(*depth);

			if (btMprIsZero((*pdir).x()) && btMprIsZero((*pdir).y()) && btMprIsZero((*pdir).z()))
			{
				*pdir = dir;
			}
			btMprVec3Normalize(pdir);

			// barycentric coordinates:
			btFindPos(portal, pos);

			return;
		}

		btExpandPortal(portal, &v4);

		iterations++;
	}
}

static void btFindPenetrTouch(btMprSimplex_t *portal, float *depth, btVector3 *dir, btVector3 *pos)
{
	// Touching contact on portal's v1 - so depth is zero and direction
	// is unimportant and pos can be guessed
	*depth = 0.f;
	btVector3 zero = btVector3(0, 0, 0);
	btVector3 *origin = &zero;

	btMprVec3Copy(dir, origin);
#ifdef MPR_AVERAGE_CONTACT_POSITIONS
	btMprVec3Copy(pos, &btMprSimplexPoint(portal, 1)->v1);
	btMprVec3Add(pos, &btMprSimplexPoint(portal, 1)->v2);
	btMprVec3Scale(pos, 0.5);
#else
	btMprVec3Copy(pos, &btMprSimplexPoint(portal, 1)->v2);
#endif
}

static void btFindPenetrSegment(btMprSimplex_t *portal,
								float *depth, btVector3 *dir, btVector3 *pos)
{
	// Origin lies on v0-v1 segment.
	// Depth is distance to v1, direction also and position must be
	// computed
#ifdef MPR_AVERAGE_CONTACT_POSITIONS
	btMprVec3Copy(pos, &btMprSimplexPoint(portal, 1)->v1);
	btMprVec3Add(pos, &btMprSimplexPoint(portal, 1)->v2);
	btMprVec3Scale(pos, 0.5f);
#else
	btMprVec3Copy(pos, &btMprSimplexPoint(portal, 1)->v2);
#endif  //MPR_AVERAGE_CONTACT_POSITIONS

	btMprVec3Copy(dir, &btMprSimplexPoint(portal, 1)->v);
	*depth = BT_MPR_SQRT(btMprVec3Len2(dir));
	btMprVec3Normalize(dir);
}

template <typename btConvexTemplate>
inline int btMprPenetration(const btConvexTemplate &a, const btConvexTemplate &b,
							const btMprCollisionDescription &colDesc,
							float *depthOut, btVector3 *dirOut, btVector3 *posOut)
{
	btMprSimplex_t portal;

	// Phase 1: Portal discovery
	int result = btDiscoverPortal(a, b, colDesc, &portal);

	//sepAxis[pairIndex] = *pdir;//or -dir?

	switch (result)
	{
		case 0:
		{
			// Phase 2: Portal refinement

			result = btRefinePortal(a, b, colDesc, &portal);
			if (result < 0)
				return -1;

			// Phase 3. Penetration info
			btFindPenetr(a, b, colDesc, &portal, depthOut, dirOut, posOut);

			break;
		}
		case 1:
		{
			// Touching contact on portal's v1.
			btFindPenetrTouch(&portal, depthOut, dirOut, posOut);
			result = 0;
			break;
		}
		case 2:
		{
			btFindPenetrSegment(&portal, depthOut, dirOut, posOut);
			result = 0;
			break;
		}
		default:
		{
			//if (res < 0)
			//{
			// Origin isn't inside portal - no collision.
			result = -1;
			//}
		}
	};

	return result;
};

template <typename btConvexTemplate, typename btMprDistanceTemplate>
inline int btComputeMprPenetration(const btConvexTemplate &a, const btConvexTemplate &b, const btMprCollisionDescription &colDesc, btMprDistanceTemplate *distInfo)
{
	btVector3 dir, pos;
	float depth;

	int res = btMprPenetration(a, b, colDesc, &depth, &dir, &pos);
	if (res == 0)
	{
		distInfo->m_distance = -depth;
		distInfo->m_pointOnB = pos;
		distInfo->m_normalBtoA = -dir;
		distInfo->m_pointOnA = pos - distInfo->m_distance * dir;
		return 0;
	}

	return -1;
}

#endif  //BT_MPR_PENETRATION_H