1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
|
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btGjkPairDetector.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h"
#include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"
#if defined(DEBUG) || defined(_DEBUG)
//#define TEST_NON_VIRTUAL 1
#include <stdio.h> //for debug printf
#ifdef __SPU__
#include <spu_printf.h>
#define printf spu_printf
#endif //__SPU__
#endif
//must be above the machine epsilon
#ifdef BT_USE_DOUBLE_PRECISION
#define REL_ERROR2 btScalar(1.0e-12)
btScalar gGjkEpaPenetrationTolerance = 1.0e-12;
#else
#define REL_ERROR2 btScalar(1.0e-6)
btScalar gGjkEpaPenetrationTolerance = 0.001;
#endif
btGjkPairDetector::btGjkPairDetector(const btConvexShape *objectA, const btConvexShape *objectB, btSimplexSolverInterface *simplexSolver, btConvexPenetrationDepthSolver *penetrationDepthSolver)
: m_cachedSeparatingAxis(btScalar(0.), btScalar(1.), btScalar(0.)),
m_penetrationDepthSolver(penetrationDepthSolver),
m_simplexSolver(simplexSolver),
m_minkowskiA(objectA),
m_minkowskiB(objectB),
m_shapeTypeA(objectA->getShapeType()),
m_shapeTypeB(objectB->getShapeType()),
m_marginA(objectA->getMargin()),
m_marginB(objectB->getMargin()),
m_ignoreMargin(false),
m_lastUsedMethod(-1),
m_catchDegeneracies(1),
m_fixContactNormalDirection(1)
{
}
btGjkPairDetector::btGjkPairDetector(const btConvexShape *objectA, const btConvexShape *objectB, int shapeTypeA, int shapeTypeB, btScalar marginA, btScalar marginB, btSimplexSolverInterface *simplexSolver, btConvexPenetrationDepthSolver *penetrationDepthSolver)
: m_cachedSeparatingAxis(btScalar(0.), btScalar(1.), btScalar(0.)),
m_penetrationDepthSolver(penetrationDepthSolver),
m_simplexSolver(simplexSolver),
m_minkowskiA(objectA),
m_minkowskiB(objectB),
m_shapeTypeA(shapeTypeA),
m_shapeTypeB(shapeTypeB),
m_marginA(marginA),
m_marginB(marginB),
m_ignoreMargin(false),
m_lastUsedMethod(-1),
m_catchDegeneracies(1),
m_fixContactNormalDirection(1)
{
}
void btGjkPairDetector::getClosestPoints(const ClosestPointInput &input, Result &output, class btIDebugDraw *debugDraw, bool swapResults)
{
(void)swapResults;
getClosestPointsNonVirtual(input, output, debugDraw);
}
static void btComputeSupport(const btConvexShape *convexA, const btTransform &localTransA, const btConvexShape *convexB, const btTransform &localTransB, const btVector3 &dir, bool check2d, btVector3 &supAworld, btVector3 &supBworld, btVector3 &aMinb)
{
btVector3 separatingAxisInA = (dir)*localTransA.getBasis();
btVector3 separatingAxisInB = (-dir) * localTransB.getBasis();
btVector3 pInANoMargin = convexA->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInA);
btVector3 qInBNoMargin = convexB->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInB);
btVector3 pInA = pInANoMargin;
btVector3 qInB = qInBNoMargin;
supAworld = localTransA(pInA);
supBworld = localTransB(qInB);
if (check2d)
{
supAworld[2] = 0.f;
supBworld[2] = 0.f;
}
aMinb = supAworld - supBworld;
}
struct btSupportVector
{
btVector3 v; //!< Support point in minkowski sum
btVector3 v1; //!< Support point in obj1
btVector3 v2; //!< Support point in obj2
};
struct btSimplex
{
btSupportVector ps[4];
int last; //!< index of last added point
};
static btVector3 ccd_vec3_origin(0, 0, 0);
inline void btSimplexInit(btSimplex *s)
{
s->last = -1;
}
inline int btSimplexSize(const btSimplex *s)
{
return s->last + 1;
}
inline const btSupportVector *btSimplexPoint(const btSimplex *s, int idx)
{
// here is no check on boundaries
return &s->ps[idx];
}
inline void btSupportCopy(btSupportVector *d, const btSupportVector *s)
{
*d = *s;
}
inline void btVec3Copy(btVector3 *v, const btVector3 *w)
{
*v = *w;
}
inline void ccdVec3Add(btVector3 *v, const btVector3 *w)
{
v->m_floats[0] += w->m_floats[0];
v->m_floats[1] += w->m_floats[1];
v->m_floats[2] += w->m_floats[2];
}
inline void ccdVec3Sub(btVector3 *v, const btVector3 *w)
{
*v -= *w;
}
inline void btVec3Sub2(btVector3 *d, const btVector3 *v, const btVector3 *w)
{
*d = (*v) - (*w);
}
inline btScalar btVec3Dot(const btVector3 *a, const btVector3 *b)
{
btScalar dot;
dot = a->dot(*b);
return dot;
}
inline btScalar ccdVec3Dist2(const btVector3 *a, const btVector3 *b)
{
btVector3 ab;
btVec3Sub2(&ab, a, b);
return btVec3Dot(&ab, &ab);
}
inline void btVec3Scale(btVector3 *d, btScalar k)
{
d->m_floats[0] *= k;
d->m_floats[1] *= k;
d->m_floats[2] *= k;
}
inline void btVec3Cross(btVector3 *d, const btVector3 *a, const btVector3 *b)
{
d->m_floats[0] = (a->m_floats[1] * b->m_floats[2]) - (a->m_floats[2] * b->m_floats[1]);
d->m_floats[1] = (a->m_floats[2] * b->m_floats[0]) - (a->m_floats[0] * b->m_floats[2]);
d->m_floats[2] = (a->m_floats[0] * b->m_floats[1]) - (a->m_floats[1] * b->m_floats[0]);
}
inline void btTripleCross(const btVector3 *a, const btVector3 *b,
const btVector3 *c, btVector3 *d)
{
btVector3 e;
btVec3Cross(&e, a, b);
btVec3Cross(d, &e, c);
}
inline int ccdEq(btScalar _a, btScalar _b)
{
btScalar ab;
btScalar a, b;
ab = btFabs(_a - _b);
if (btFabs(ab) < SIMD_EPSILON)
return 1;
a = btFabs(_a);
b = btFabs(_b);
if (b > a)
{
return ab < SIMD_EPSILON * b;
}
else
{
return ab < SIMD_EPSILON * a;
}
}
btScalar ccdVec3X(const btVector3 *v)
{
return v->x();
}
btScalar ccdVec3Y(const btVector3 *v)
{
return v->y();
}
btScalar ccdVec3Z(const btVector3 *v)
{
return v->z();
}
inline int btVec3Eq(const btVector3 *a, const btVector3 *b)
{
return ccdEq(ccdVec3X(a), ccdVec3X(b)) && ccdEq(ccdVec3Y(a), ccdVec3Y(b)) && ccdEq(ccdVec3Z(a), ccdVec3Z(b));
}
inline void btSimplexAdd(btSimplex *s, const btSupportVector *v)
{
// here is no check on boundaries in sake of speed
++s->last;
btSupportCopy(s->ps + s->last, v);
}
inline void btSimplexSet(btSimplex *s, size_t pos, const btSupportVector *a)
{
btSupportCopy(s->ps + pos, a);
}
inline void btSimplexSetSize(btSimplex *s, int size)
{
s->last = size - 1;
}
inline const btSupportVector *ccdSimplexLast(const btSimplex *s)
{
return btSimplexPoint(s, s->last);
}
inline int ccdSign(btScalar val)
{
if (btFuzzyZero(val))
{
return 0;
}
else if (val < btScalar(0))
{
return -1;
}
return 1;
}
inline btScalar btVec3PointSegmentDist2(const btVector3 *P,
const btVector3 *x0,
const btVector3 *b,
btVector3 *witness)
{
// The computation comes from solving equation of segment:
// S(t) = x0 + t.d
// where - x0 is initial point of segment
// - d is direction of segment from x0 (|d| > 0)
// - t belongs to <0, 1> interval
//
// Than, distance from a segment to some point P can be expressed:
// D(t) = |x0 + t.d - P|^2
// which is distance from any point on segment. Minimization
// of this function brings distance from P to segment.
// Minimization of D(t) leads to simple quadratic equation that's
// solving is straightforward.
//
// Bonus of this method is witness point for free.
btScalar dist, t;
btVector3 d, a;
// direction of segment
btVec3Sub2(&d, b, x0);
// precompute vector from P to x0
btVec3Sub2(&a, x0, P);
t = -btScalar(1.) * btVec3Dot(&a, &d);
t /= btVec3Dot(&d, &d);
if (t < btScalar(0) || btFuzzyZero(t))
{
dist = ccdVec3Dist2(x0, P);
if (witness)
btVec3Copy(witness, x0);
}
else if (t > btScalar(1) || ccdEq(t, btScalar(1)))
{
dist = ccdVec3Dist2(b, P);
if (witness)
btVec3Copy(witness, b);
}
else
{
if (witness)
{
btVec3Copy(witness, &d);
btVec3Scale(witness, t);
ccdVec3Add(witness, x0);
dist = ccdVec3Dist2(witness, P);
}
else
{
// recycling variables
btVec3Scale(&d, t);
ccdVec3Add(&d, &a);
dist = btVec3Dot(&d, &d);
}
}
return dist;
}
btScalar btVec3PointTriDist2(const btVector3 *P,
const btVector3 *x0, const btVector3 *B,
const btVector3 *C,
btVector3 *witness)
{
// Computation comes from analytic expression for triangle (x0, B, C)
// T(s, t) = x0 + s.d1 + t.d2, where d1 = B - x0 and d2 = C - x0 and
// Then equation for distance is:
// D(s, t) = | T(s, t) - P |^2
// This leads to minimization of quadratic function of two variables.
// The solution from is taken only if s is between 0 and 1, t is
// between 0 and 1 and t + s < 1, otherwise distance from segment is
// computed.
btVector3 d1, d2, a;
double u, v, w, p, q, r;
double s, t, dist, dist2;
btVector3 witness2;
btVec3Sub2(&d1, B, x0);
btVec3Sub2(&d2, C, x0);
btVec3Sub2(&a, x0, P);
u = btVec3Dot(&a, &a);
v = btVec3Dot(&d1, &d1);
w = btVec3Dot(&d2, &d2);
p = btVec3Dot(&a, &d1);
q = btVec3Dot(&a, &d2);
r = btVec3Dot(&d1, &d2);
s = (q * r - w * p) / (w * v - r * r);
t = (-s * r - q) / w;
if ((btFuzzyZero(s) || s > btScalar(0)) && (ccdEq(s, btScalar(1)) || s < btScalar(1)) && (btFuzzyZero(t) || t > btScalar(0)) && (ccdEq(t, btScalar(1)) || t < btScalar(1)) && (ccdEq(t + s, btScalar(1)) || t + s < btScalar(1)))
{
if (witness)
{
btVec3Scale(&d1, s);
btVec3Scale(&d2, t);
btVec3Copy(witness, x0);
ccdVec3Add(witness, &d1);
ccdVec3Add(witness, &d2);
dist = ccdVec3Dist2(witness, P);
}
else
{
dist = s * s * v;
dist += t * t * w;
dist += btScalar(2.) * s * t * r;
dist += btScalar(2.) * s * p;
dist += btScalar(2.) * t * q;
dist += u;
}
}
else
{
dist = btVec3PointSegmentDist2(P, x0, B, witness);
dist2 = btVec3PointSegmentDist2(P, x0, C, &witness2);
if (dist2 < dist)
{
dist = dist2;
if (witness)
btVec3Copy(witness, &witness2);
}
dist2 = btVec3PointSegmentDist2(P, B, C, &witness2);
if (dist2 < dist)
{
dist = dist2;
if (witness)
btVec3Copy(witness, &witness2);
}
}
return dist;
}
static int btDoSimplex2(btSimplex *simplex, btVector3 *dir)
{
const btSupportVector *A, *B;
btVector3 AB, AO, tmp;
btScalar dot;
// get last added as A
A = ccdSimplexLast(simplex);
// get the other point
B = btSimplexPoint(simplex, 0);
// compute AB oriented segment
btVec3Sub2(&AB, &B->v, &A->v);
// compute AO vector
btVec3Copy(&AO, &A->v);
btVec3Scale(&AO, -btScalar(1));
// dot product AB . AO
dot = btVec3Dot(&AB, &AO);
// check if origin doesn't lie on AB segment
btVec3Cross(&tmp, &AB, &AO);
if (btFuzzyZero(btVec3Dot(&tmp, &tmp)) && dot > btScalar(0))
{
return 1;
}
// check if origin is in area where AB segment is
if (btFuzzyZero(dot) || dot < btScalar(0))
{
// origin is in outside are of A
btSimplexSet(simplex, 0, A);
btSimplexSetSize(simplex, 1);
btVec3Copy(dir, &AO);
}
else
{
// origin is in area where AB segment is
// keep simplex untouched and set direction to
// AB x AO x AB
btTripleCross(&AB, &AO, &AB, dir);
}
return 0;
}
static int btDoSimplex3(btSimplex *simplex, btVector3 *dir)
{
const btSupportVector *A, *B, *C;
btVector3 AO, AB, AC, ABC, tmp;
btScalar dot, dist;
// get last added as A
A = ccdSimplexLast(simplex);
// get the other points
B = btSimplexPoint(simplex, 1);
C = btSimplexPoint(simplex, 0);
// check touching contact
dist = btVec3PointTriDist2(&ccd_vec3_origin, &A->v, &B->v, &C->v, 0);
if (btFuzzyZero(dist))
{
return 1;
}
// check if triangle is really triangle (has area > 0)
// if not simplex can't be expanded and thus no itersection is found
if (btVec3Eq(&A->v, &B->v) || btVec3Eq(&A->v, &C->v))
{
return -1;
}
// compute AO vector
btVec3Copy(&AO, &A->v);
btVec3Scale(&AO, -btScalar(1));
// compute AB and AC segments and ABC vector (perpendircular to triangle)
btVec3Sub2(&AB, &B->v, &A->v);
btVec3Sub2(&AC, &C->v, &A->v);
btVec3Cross(&ABC, &AB, &AC);
btVec3Cross(&tmp, &ABC, &AC);
dot = btVec3Dot(&tmp, &AO);
if (btFuzzyZero(dot) || dot > btScalar(0))
{
dot = btVec3Dot(&AC, &AO);
if (btFuzzyZero(dot) || dot > btScalar(0))
{
// C is already in place
btSimplexSet(simplex, 1, A);
btSimplexSetSize(simplex, 2);
btTripleCross(&AC, &AO, &AC, dir);
}
else
{
dot = btVec3Dot(&AB, &AO);
if (btFuzzyZero(dot) || dot > btScalar(0))
{
btSimplexSet(simplex, 0, B);
btSimplexSet(simplex, 1, A);
btSimplexSetSize(simplex, 2);
btTripleCross(&AB, &AO, &AB, dir);
}
else
{
btSimplexSet(simplex, 0, A);
btSimplexSetSize(simplex, 1);
btVec3Copy(dir, &AO);
}
}
}
else
{
btVec3Cross(&tmp, &AB, &ABC);
dot = btVec3Dot(&tmp, &AO);
if (btFuzzyZero(dot) || dot > btScalar(0))
{
dot = btVec3Dot(&AB, &AO);
if (btFuzzyZero(dot) || dot > btScalar(0))
{
btSimplexSet(simplex, 0, B);
btSimplexSet(simplex, 1, A);
btSimplexSetSize(simplex, 2);
btTripleCross(&AB, &AO, &AB, dir);
}
else
{
btSimplexSet(simplex, 0, A);
btSimplexSetSize(simplex, 1);
btVec3Copy(dir, &AO);
}
}
else
{
dot = btVec3Dot(&ABC, &AO);
if (btFuzzyZero(dot) || dot > btScalar(0))
{
btVec3Copy(dir, &ABC);
}
else
{
btSupportVector tmp;
btSupportCopy(&tmp, C);
btSimplexSet(simplex, 0, B);
btSimplexSet(simplex, 1, &tmp);
btVec3Copy(dir, &ABC);
btVec3Scale(dir, -btScalar(1));
}
}
}
return 0;
}
static int btDoSimplex4(btSimplex *simplex, btVector3 *dir)
{
const btSupportVector *A, *B, *C, *D;
btVector3 AO, AB, AC, AD, ABC, ACD, ADB;
int B_on_ACD, C_on_ADB, D_on_ABC;
int AB_O, AC_O, AD_O;
btScalar dist;
// get last added as A
A = ccdSimplexLast(simplex);
// get the other points
B = btSimplexPoint(simplex, 2);
C = btSimplexPoint(simplex, 1);
D = btSimplexPoint(simplex, 0);
// check if tetrahedron is really tetrahedron (has volume > 0)
// if it is not simplex can't be expanded and thus no intersection is
// found
dist = btVec3PointTriDist2(&A->v, &B->v, &C->v, &D->v, 0);
if (btFuzzyZero(dist))
{
return -1;
}
// check if origin lies on some of tetrahedron's face - if so objects
// intersect
dist = btVec3PointTriDist2(&ccd_vec3_origin, &A->v, &B->v, &C->v, 0);
if (btFuzzyZero(dist))
return 1;
dist = btVec3PointTriDist2(&ccd_vec3_origin, &A->v, &C->v, &D->v, 0);
if (btFuzzyZero(dist))
return 1;
dist = btVec3PointTriDist2(&ccd_vec3_origin, &A->v, &B->v, &D->v, 0);
if (btFuzzyZero(dist))
return 1;
dist = btVec3PointTriDist2(&ccd_vec3_origin, &B->v, &C->v, &D->v, 0);
if (btFuzzyZero(dist))
return 1;
// compute AO, AB, AC, AD segments and ABC, ACD, ADB normal vectors
btVec3Copy(&AO, &A->v);
btVec3Scale(&AO, -btScalar(1));
btVec3Sub2(&AB, &B->v, &A->v);
btVec3Sub2(&AC, &C->v, &A->v);
btVec3Sub2(&AD, &D->v, &A->v);
btVec3Cross(&ABC, &AB, &AC);
btVec3Cross(&ACD, &AC, &AD);
btVec3Cross(&ADB, &AD, &AB);
// side (positive or negative) of B, C, D relative to planes ACD, ADB
// and ABC respectively
B_on_ACD = ccdSign(btVec3Dot(&ACD, &AB));
C_on_ADB = ccdSign(btVec3Dot(&ADB, &AC));
D_on_ABC = ccdSign(btVec3Dot(&ABC, &AD));
// whether origin is on same side of ACD, ADB, ABC as B, C, D
// respectively
AB_O = ccdSign(btVec3Dot(&ACD, &AO)) == B_on_ACD;
AC_O = ccdSign(btVec3Dot(&ADB, &AO)) == C_on_ADB;
AD_O = ccdSign(btVec3Dot(&ABC, &AO)) == D_on_ABC;
if (AB_O && AC_O && AD_O)
{
// origin is in tetrahedron
return 1;
// rearrange simplex to triangle and call btDoSimplex3()
}
else if (!AB_O)
{
// B is farthest from the origin among all of the tetrahedron's
// points, so remove it from the list and go on with the triangle
// case
// D and C are in place
btSimplexSet(simplex, 2, A);
btSimplexSetSize(simplex, 3);
}
else if (!AC_O)
{
// C is farthest
btSimplexSet(simplex, 1, D);
btSimplexSet(simplex, 0, B);
btSimplexSet(simplex, 2, A);
btSimplexSetSize(simplex, 3);
}
else
{ // (!AD_O)
btSimplexSet(simplex, 0, C);
btSimplexSet(simplex, 1, B);
btSimplexSet(simplex, 2, A);
btSimplexSetSize(simplex, 3);
}
return btDoSimplex3(simplex, dir);
}
static int btDoSimplex(btSimplex *simplex, btVector3 *dir)
{
if (btSimplexSize(simplex) == 2)
{
// simplex contains segment only one segment
return btDoSimplex2(simplex, dir);
}
else if (btSimplexSize(simplex) == 3)
{
// simplex contains triangle
return btDoSimplex3(simplex, dir);
}
else
{ // btSimplexSize(simplex) == 4
// tetrahedron - this is the only shape which can encapsule origin
// so btDoSimplex4() also contains test on it
return btDoSimplex4(simplex, dir);
}
}
#ifdef __SPU__
void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput &input, Result &output, class btIDebugDraw *debugDraw)
#else
void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput &input, Result &output, class btIDebugDraw *debugDraw)
#endif
{
m_cachedSeparatingDistance = 0.f;
btScalar distance = btScalar(0.);
btVector3 normalInB(btScalar(0.), btScalar(0.), btScalar(0.));
btVector3 pointOnA, pointOnB;
btTransform localTransA = input.m_transformA;
btTransform localTransB = input.m_transformB;
btVector3 positionOffset = (localTransA.getOrigin() + localTransB.getOrigin()) * btScalar(0.5);
localTransA.getOrigin() -= positionOffset;
localTransB.getOrigin() -= positionOffset;
bool check2d = m_minkowskiA->isConvex2d() && m_minkowskiB->isConvex2d();
btScalar marginA = m_marginA;
btScalar marginB = m_marginB;
//for CCD we don't use margins
if (m_ignoreMargin)
{
marginA = btScalar(0.);
marginB = btScalar(0.);
}
m_curIter = 0;
int gGjkMaxIter = 1000; //this is to catch invalid input, perhaps check for #NaN?
m_cachedSeparatingAxis.setValue(0, 1, 0);
bool isValid = false;
bool checkSimplex = false;
bool checkPenetration = true;
m_degenerateSimplex = 0;
m_lastUsedMethod = -1;
int status = -2;
btVector3 orgNormalInB(0, 0, 0);
btScalar margin = marginA + marginB;
//we add a separate implementation to check if the convex shapes intersect
//See also "Real-time Collision Detection with Implicit Objects" by Leif Olvang
//Todo: integrate the simplex penetration check directly inside the Bullet btVoronoiSimplexSolver
//and remove this temporary code from libCCD
//this fixes issue https://github.com/bulletphysics/bullet3/issues/1703
//note, for large differences in shapes, use double precision build!
{
btScalar squaredDistance = BT_LARGE_FLOAT;
btScalar delta = btScalar(0.);
btSimplex simplex1;
btSimplex *simplex = &simplex1;
btSimplexInit(simplex);
btVector3 dir(1, 0, 0);
{
btVector3 lastSupV;
btVector3 supAworld;
btVector3 supBworld;
btComputeSupport(m_minkowskiA, localTransA, m_minkowskiB, localTransB, dir, check2d, supAworld, supBworld, lastSupV);
btSupportVector last;
last.v = lastSupV;
last.v1 = supAworld;
last.v2 = supBworld;
btSimplexAdd(simplex, &last);
dir = -lastSupV;
// start iterations
for (int iterations = 0; iterations < gGjkMaxIter; iterations++)
{
// obtain support point
btComputeSupport(m_minkowskiA, localTransA, m_minkowskiB, localTransB, dir, check2d, supAworld, supBworld, lastSupV);
// check if farthest point in Minkowski difference in direction dir
// isn't somewhere before origin (the test on negative dot product)
// - because if it is, objects are not intersecting at all.
btScalar delta = lastSupV.dot(dir);
if (delta < 0)
{
//no intersection, besides margin
status = -1;
break;
}
// add last support vector to simplex
last.v = lastSupV;
last.v1 = supAworld;
last.v2 = supBworld;
btSimplexAdd(simplex, &last);
// if btDoSimplex returns 1 if objects intersect, -1 if objects don't
// intersect and 0 if algorithm should continue
btVector3 newDir;
int do_simplex_res = btDoSimplex(simplex, &dir);
if (do_simplex_res == 1)
{
status = 0; // intersection found
break;
}
else if (do_simplex_res == -1)
{
// intersection not found
status = -1;
break;
}
if (btFuzzyZero(btVec3Dot(&dir, &dir)))
{
// intersection not found
status = -1;
}
if (dir.length2() < SIMD_EPSILON)
{
//no intersection, besides margin
status = -1;
break;
}
if (dir.fuzzyZero())
{
// intersection not found
status = -1;
break;
}
}
}
m_simplexSolver->reset();
if (status == 0)
{
//status = 0;
//printf("Intersect!\n");
}
if (status == -1)
{
//printf("not intersect\n");
}
//printf("dir=%f,%f,%f\n",dir[0],dir[1],dir[2]);
if (1)
{
for (;;)
//while (true)
{
btVector3 separatingAxisInA = (-m_cachedSeparatingAxis) * localTransA.getBasis();
btVector3 separatingAxisInB = m_cachedSeparatingAxis * localTransB.getBasis();
btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInA);
btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInB);
btVector3 pWorld = localTransA(pInA);
btVector3 qWorld = localTransB(qInB);
if (check2d)
{
pWorld[2] = 0.f;
qWorld[2] = 0.f;
}
btVector3 w = pWorld - qWorld;
delta = m_cachedSeparatingAxis.dot(w);
// potential exit, they don't overlap
if ((delta > btScalar(0.0)) && (delta * delta > squaredDistance * input.m_maximumDistanceSquared))
{
m_degenerateSimplex = 10;
checkSimplex = true;
//checkPenetration = false;
break;
}
//exit 0: the new point is already in the simplex, or we didn't come any closer
if (m_simplexSolver->inSimplex(w))
{
m_degenerateSimplex = 1;
checkSimplex = true;
break;
}
// are we getting any closer ?
btScalar f0 = squaredDistance - delta;
btScalar f1 = squaredDistance * REL_ERROR2;
if (f0 <= f1)
{
if (f0 <= btScalar(0.))
{
m_degenerateSimplex = 2;
}
else
{
m_degenerateSimplex = 11;
}
checkSimplex = true;
break;
}
//add current vertex to simplex
m_simplexSolver->addVertex(w, pWorld, qWorld);
btVector3 newCachedSeparatingAxis;
//calculate the closest point to the origin (update vector v)
if (!m_simplexSolver->closest(newCachedSeparatingAxis))
{
m_degenerateSimplex = 3;
checkSimplex = true;
break;
}
if (newCachedSeparatingAxis.length2() < REL_ERROR2)
{
m_cachedSeparatingAxis = newCachedSeparatingAxis;
m_degenerateSimplex = 6;
checkSimplex = true;
break;
}
btScalar previousSquaredDistance = squaredDistance;
squaredDistance = newCachedSeparatingAxis.length2();
#if 0
///warning: this termination condition leads to some problems in 2d test case see Bullet/Demos/Box2dDemo
if (squaredDistance > previousSquaredDistance)
{
m_degenerateSimplex = 7;
squaredDistance = previousSquaredDistance;
checkSimplex = false;
break;
}
#endif //
//redundant m_simplexSolver->compute_points(pointOnA, pointOnB);
//are we getting any closer ?
if (previousSquaredDistance - squaredDistance <= SIMD_EPSILON * previousSquaredDistance)
{
// m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
checkSimplex = true;
m_degenerateSimplex = 12;
break;
}
m_cachedSeparatingAxis = newCachedSeparatingAxis;
//degeneracy, this is typically due to invalid/uninitialized worldtransforms for a btCollisionObject
if (m_curIter++ > gGjkMaxIter)
{
#if defined(DEBUG) || defined(_DEBUG)
printf("btGjkPairDetector maxIter exceeded:%i\n", m_curIter);
printf("sepAxis=(%f,%f,%f), squaredDistance = %f, shapeTypeA=%i,shapeTypeB=%i\n",
m_cachedSeparatingAxis.getX(),
m_cachedSeparatingAxis.getY(),
m_cachedSeparatingAxis.getZ(),
squaredDistance,
m_minkowskiA->getShapeType(),
m_minkowskiB->getShapeType());
#endif
break;
}
bool check = (!m_simplexSolver->fullSimplex());
//bool check = (!m_simplexSolver->fullSimplex() && squaredDistance > SIMD_EPSILON * m_simplexSolver->maxVertex());
if (!check)
{
//do we need this backup_closest here ?
// m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
m_degenerateSimplex = 13;
break;
}
}
if (checkSimplex)
{
m_simplexSolver->compute_points(pointOnA, pointOnB);
normalInB = m_cachedSeparatingAxis;
btScalar lenSqr = m_cachedSeparatingAxis.length2();
//valid normal
if (lenSqr < REL_ERROR2)
{
m_degenerateSimplex = 5;
}
if (lenSqr > SIMD_EPSILON * SIMD_EPSILON)
{
btScalar rlen = btScalar(1.) / btSqrt(lenSqr);
normalInB *= rlen; //normalize
btScalar s = btSqrt(squaredDistance);
btAssert(s > btScalar(0.0));
pointOnA -= m_cachedSeparatingAxis * (marginA / s);
pointOnB += m_cachedSeparatingAxis * (marginB / s);
distance = ((btScalar(1.) / rlen) - margin);
isValid = true;
orgNormalInB = normalInB;
m_lastUsedMethod = 1;
}
else
{
m_lastUsedMethod = 2;
}
}
}
bool catchDegeneratePenetrationCase =
(m_catchDegeneracies && m_penetrationDepthSolver && m_degenerateSimplex && ((distance + margin) < gGjkEpaPenetrationTolerance));
//if (checkPenetration && !isValid)
if ((checkPenetration && (!isValid || catchDegeneratePenetrationCase)) || (status == 0))
{
//penetration case
//if there is no way to handle penetrations, bail out
if (m_penetrationDepthSolver)
{
// Penetration depth case.
btVector3 tmpPointOnA, tmpPointOnB;
m_cachedSeparatingAxis.setZero();
bool isValid2 = m_penetrationDepthSolver->calcPenDepth(
*m_simplexSolver,
m_minkowskiA, m_minkowskiB,
localTransA, localTransB,
m_cachedSeparatingAxis, tmpPointOnA, tmpPointOnB,
debugDraw);
if (m_cachedSeparatingAxis.length2())
{
if (isValid2)
{
btVector3 tmpNormalInB = tmpPointOnB - tmpPointOnA;
btScalar lenSqr = tmpNormalInB.length2();
if (lenSqr <= (SIMD_EPSILON * SIMD_EPSILON))
{
tmpNormalInB = m_cachedSeparatingAxis;
lenSqr = m_cachedSeparatingAxis.length2();
}
if (lenSqr > (SIMD_EPSILON * SIMD_EPSILON))
{
tmpNormalInB /= btSqrt(lenSqr);
btScalar distance2 = -(tmpPointOnA - tmpPointOnB).length();
m_lastUsedMethod = 3;
//only replace valid penetrations when the result is deeper (check)
if (!isValid || (distance2 < distance))
{
distance = distance2;
pointOnA = tmpPointOnA;
pointOnB = tmpPointOnB;
normalInB = tmpNormalInB;
isValid = true;
}
else
{
m_lastUsedMethod = 8;
}
}
else
{
m_lastUsedMethod = 9;
}
}
else
{
///this is another degenerate case, where the initial GJK calculation reports a degenerate case
///EPA reports no penetration, and the second GJK (using the supporting vector without margin)
///reports a valid positive distance. Use the results of the second GJK instead of failing.
///thanks to Jacob.Langford for the reproduction case
///http://code.google.com/p/bullet/issues/detail?id=250
if (m_cachedSeparatingAxis.length2() > btScalar(0.))
{
btScalar distance2 = (tmpPointOnA - tmpPointOnB).length() - margin;
//only replace valid distances when the distance is less
if (!isValid || (distance2 < distance))
{
distance = distance2;
pointOnA = tmpPointOnA;
pointOnB = tmpPointOnB;
pointOnA -= m_cachedSeparatingAxis * marginA;
pointOnB += m_cachedSeparatingAxis * marginB;
normalInB = m_cachedSeparatingAxis;
normalInB.normalize();
isValid = true;
m_lastUsedMethod = 6;
}
else
{
m_lastUsedMethod = 5;
}
}
}
}
else
{
//printf("EPA didn't return a valid value\n");
}
}
}
}
if (isValid && ((distance < 0) || (distance * distance < input.m_maximumDistanceSquared)))
{
m_cachedSeparatingAxis = normalInB;
m_cachedSeparatingDistance = distance;
if (1)
{
///todo: need to track down this EPA penetration solver degeneracy
///the penetration solver reports penetration but the contact normal
///connecting the contact points is pointing in the opposite direction
///until then, detect the issue and revert the normal
btScalar d2 = 0.f;
{
btVector3 separatingAxisInA = (-orgNormalInB) * localTransA.getBasis();
btVector3 separatingAxisInB = orgNormalInB * localTransB.getBasis();
btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInA);
btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInB);
btVector3 pWorld = localTransA(pInA);
btVector3 qWorld = localTransB(qInB);
btVector3 w = pWorld - qWorld;
d2 = orgNormalInB.dot(w) - margin;
}
btScalar d1 = 0;
{
btVector3 separatingAxisInA = (normalInB)*localTransA.getBasis();
btVector3 separatingAxisInB = -normalInB * localTransB.getBasis();
btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInA);
btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInB);
btVector3 pWorld = localTransA(pInA);
btVector3 qWorld = localTransB(qInB);
btVector3 w = pWorld - qWorld;
d1 = (-normalInB).dot(w) - margin;
}
btScalar d0 = 0.f;
{
btVector3 separatingAxisInA = (-normalInB) * input.m_transformA.getBasis();
btVector3 separatingAxisInB = normalInB * input.m_transformB.getBasis();
btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInA);
btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInB);
btVector3 pWorld = localTransA(pInA);
btVector3 qWorld = localTransB(qInB);
btVector3 w = pWorld - qWorld;
d0 = normalInB.dot(w) - margin;
}
if (d1 > d0)
{
m_lastUsedMethod = 10;
normalInB *= -1;
}
if (orgNormalInB.length2())
{
if (d2 > d0 && d2 > d1 && d2 > distance)
{
normalInB = orgNormalInB;
distance = d2;
}
}
}
output.addContactPoint(
normalInB,
pointOnB + positionOffset,
distance);
}
else
{
//printf("invalid gjk query\n");
}
}
|