1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
|
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2014 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_GJK_EPA_PENETATION_CONVEX_COLLISION_H
#define BT_GJK_EPA_PENETATION_CONVEX_COLLISION_H
#include "LinearMath/btTransform.h" // Note that btVector3 might be double precision...
#include "btGjkEpa3.h"
#include "btGjkCollisionDescription.h"
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
template <typename btConvexTemplate>
bool btGjkEpaCalcPenDepth(const btConvexTemplate& a, const btConvexTemplate& b,
const btGjkCollisionDescription& colDesc,
btVector3& v, btVector3& wWitnessOnA, btVector3& wWitnessOnB)
{
(void)v;
// const btScalar radialmargin(btScalar(0.));
btVector3 guessVector(b.getWorldTransform().getOrigin() - a.getWorldTransform().getOrigin()); //?? why not use the GJK input?
btGjkEpaSolver3::sResults results;
if (btGjkEpaSolver3_Penetration(a, b, guessVector, results))
{
// debugDraw->drawLine(results.witnesses[1],results.witnesses[1]+results.normal,btVector3(255,0,0));
//resultOut->addContactPoint(results.normal,results.witnesses[1],-results.depth);
wWitnessOnA = results.witnesses[0];
wWitnessOnB = results.witnesses[1];
v = results.normal;
return true;
}
else
{
if (btGjkEpaSolver3_Distance(a, b, guessVector, results))
{
wWitnessOnA = results.witnesses[0];
wWitnessOnB = results.witnesses[1];
v = results.normal;
return false;
}
}
return false;
}
template <typename btConvexTemplate, typename btGjkDistanceTemplate>
int btComputeGjkEpaPenetration(const btConvexTemplate& a, const btConvexTemplate& b, const btGjkCollisionDescription& colDesc, btVoronoiSimplexSolver& simplexSolver, btGjkDistanceTemplate* distInfo)
{
bool m_catchDegeneracies = true;
btScalar m_cachedSeparatingDistance = 0.f;
btScalar distance = btScalar(0.);
btVector3 normalInB(btScalar(0.), btScalar(0.), btScalar(0.));
btVector3 pointOnA, pointOnB;
btTransform localTransA = a.getWorldTransform();
btTransform localTransB = b.getWorldTransform();
btScalar marginA = a.getMargin();
btScalar marginB = b.getMargin();
int m_curIter = 0;
int gGjkMaxIter = colDesc.m_maxGjkIterations; //this is to catch invalid input, perhaps check for #NaN?
btVector3 m_cachedSeparatingAxis = colDesc.m_firstDir;
bool isValid = false;
bool checkSimplex = false;
bool checkPenetration = true;
int m_degenerateSimplex = 0;
int m_lastUsedMethod = -1;
{
btScalar squaredDistance = BT_LARGE_FLOAT;
btScalar delta = btScalar(0.);
btScalar margin = marginA + marginB;
simplexSolver.reset();
for (;;)
//while (true)
{
btVector3 separatingAxisInA = (-m_cachedSeparatingAxis) * localTransA.getBasis();
btVector3 separatingAxisInB = m_cachedSeparatingAxis * localTransB.getBasis();
btVector3 pInA = a.getLocalSupportWithoutMargin(separatingAxisInA);
btVector3 qInB = b.getLocalSupportWithoutMargin(separatingAxisInB);
btVector3 pWorld = localTransA(pInA);
btVector3 qWorld = localTransB(qInB);
btVector3 w = pWorld - qWorld;
delta = m_cachedSeparatingAxis.dot(w);
// potential exit, they don't overlap
if ((delta > btScalar(0.0)) && (delta * delta > squaredDistance * colDesc.m_maximumDistanceSquared))
{
m_degenerateSimplex = 10;
checkSimplex = true;
//checkPenetration = false;
break;
}
//exit 0: the new point is already in the simplex, or we didn't come any closer
if (simplexSolver.inSimplex(w))
{
m_degenerateSimplex = 1;
checkSimplex = true;
break;
}
// are we getting any closer ?
btScalar f0 = squaredDistance - delta;
btScalar f1 = squaredDistance * colDesc.m_gjkRelError2;
if (f0 <= f1)
{
if (f0 <= btScalar(0.))
{
m_degenerateSimplex = 2;
}
else
{
m_degenerateSimplex = 11;
}
checkSimplex = true;
break;
}
//add current vertex to simplex
simplexSolver.addVertex(w, pWorld, qWorld);
btVector3 newCachedSeparatingAxis;
//calculate the closest point to the origin (update vector v)
if (!simplexSolver.closest(newCachedSeparatingAxis))
{
m_degenerateSimplex = 3;
checkSimplex = true;
break;
}
if (newCachedSeparatingAxis.length2() < colDesc.m_gjkRelError2)
{
m_cachedSeparatingAxis = newCachedSeparatingAxis;
m_degenerateSimplex = 6;
checkSimplex = true;
break;
}
btScalar previousSquaredDistance = squaredDistance;
squaredDistance = newCachedSeparatingAxis.length2();
#if 0
///warning: this termination condition leads to some problems in 2d test case see Bullet/Demos/Box2dDemo
if (squaredDistance>previousSquaredDistance)
{
m_degenerateSimplex = 7;
squaredDistance = previousSquaredDistance;
checkSimplex = false;
break;
}
#endif //
//redundant m_simplexSolver->compute_points(pointOnA, pointOnB);
//are we getting any closer ?
if (previousSquaredDistance - squaredDistance <= SIMD_EPSILON * previousSquaredDistance)
{
// m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
checkSimplex = true;
m_degenerateSimplex = 12;
break;
}
m_cachedSeparatingAxis = newCachedSeparatingAxis;
//degeneracy, this is typically due to invalid/uninitialized worldtransforms for a btCollisionObject
if (m_curIter++ > gGjkMaxIter)
{
#if defined(DEBUG) || defined(_DEBUG)
printf("btGjkPairDetector maxIter exceeded:%i\n", m_curIter);
printf("sepAxis=(%f,%f,%f), squaredDistance = %f\n",
m_cachedSeparatingAxis.getX(),
m_cachedSeparatingAxis.getY(),
m_cachedSeparatingAxis.getZ(),
squaredDistance);
#endif
break;
}
bool check = (!simplexSolver.fullSimplex());
//bool check = (!m_simplexSolver->fullSimplex() && squaredDistance > SIMD_EPSILON * m_simplexSolver->maxVertex());
if (!check)
{
//do we need this backup_closest here ?
// m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
m_degenerateSimplex = 13;
break;
}
}
if (checkSimplex)
{
simplexSolver.compute_points(pointOnA, pointOnB);
normalInB = m_cachedSeparatingAxis;
btScalar lenSqr = m_cachedSeparatingAxis.length2();
//valid normal
if (lenSqr < 0.0001)
{
m_degenerateSimplex = 5;
}
if (lenSqr > SIMD_EPSILON * SIMD_EPSILON)
{
btScalar rlen = btScalar(1.) / btSqrt(lenSqr);
normalInB *= rlen; //normalize
btScalar s = btSqrt(squaredDistance);
btAssert(s > btScalar(0.0));
pointOnA -= m_cachedSeparatingAxis * (marginA / s);
pointOnB += m_cachedSeparatingAxis * (marginB / s);
distance = ((btScalar(1.) / rlen) - margin);
isValid = true;
m_lastUsedMethod = 1;
}
else
{
m_lastUsedMethod = 2;
}
}
bool catchDegeneratePenetrationCase =
(m_catchDegeneracies && m_degenerateSimplex && ((distance + margin) < 0.01));
//if (checkPenetration && !isValid)
if (checkPenetration && (!isValid || catchDegeneratePenetrationCase))
{
//penetration case
//if there is no way to handle penetrations, bail out
// Penetration depth case.
btVector3 tmpPointOnA, tmpPointOnB;
m_cachedSeparatingAxis.setZero();
bool isValid2 = btGjkEpaCalcPenDepth(a, b,
colDesc,
m_cachedSeparatingAxis, tmpPointOnA, tmpPointOnB);
if (isValid2)
{
btVector3 tmpNormalInB = tmpPointOnB - tmpPointOnA;
btScalar lenSqr = tmpNormalInB.length2();
if (lenSqr <= (SIMD_EPSILON * SIMD_EPSILON))
{
tmpNormalInB = m_cachedSeparatingAxis;
lenSqr = m_cachedSeparatingAxis.length2();
}
if (lenSqr > (SIMD_EPSILON * SIMD_EPSILON))
{
tmpNormalInB /= btSqrt(lenSqr);
btScalar distance2 = -(tmpPointOnA - tmpPointOnB).length();
//only replace valid penetrations when the result is deeper (check)
if (!isValid || (distance2 < distance))
{
distance = distance2;
pointOnA = tmpPointOnA;
pointOnB = tmpPointOnB;
normalInB = tmpNormalInB;
isValid = true;
m_lastUsedMethod = 3;
}
else
{
m_lastUsedMethod = 8;
}
}
else
{
m_lastUsedMethod = 9;
}
}
else
{
///this is another degenerate case, where the initial GJK calculation reports a degenerate case
///EPA reports no penetration, and the second GJK (using the supporting vector without margin)
///reports a valid positive distance. Use the results of the second GJK instead of failing.
///thanks to Jacob.Langford for the reproduction case
///http://code.google.com/p/bullet/issues/detail?id=250
if (m_cachedSeparatingAxis.length2() > btScalar(0.))
{
btScalar distance2 = (tmpPointOnA - tmpPointOnB).length() - margin;
//only replace valid distances when the distance is less
if (!isValid || (distance2 < distance))
{
distance = distance2;
pointOnA = tmpPointOnA;
pointOnB = tmpPointOnB;
pointOnA -= m_cachedSeparatingAxis * marginA;
pointOnB += m_cachedSeparatingAxis * marginB;
normalInB = m_cachedSeparatingAxis;
normalInB.normalize();
isValid = true;
m_lastUsedMethod = 6;
}
else
{
m_lastUsedMethod = 5;
}
}
}
}
}
if (isValid && ((distance < 0) || (distance * distance < colDesc.m_maximumDistanceSquared)))
{
m_cachedSeparatingAxis = normalInB;
m_cachedSeparatingDistance = distance;
distInfo->m_distance = distance;
distInfo->m_normalBtoA = normalInB;
distInfo->m_pointOnB = pointOnB;
distInfo->m_pointOnA = pointOnB + normalInB * distance;
return 0;
}
return -m_lastUsedMethod;
}
#endif //BT_GJK_EPA_PENETATION_CONVEX_COLLISION_H
|