summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletCollision/Gimpact/gim_hash_table.h
blob: abf88d3108da7318274c2edf4bc2634bd6d7c455 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
#ifndef GIM_HASH_TABLE_H_INCLUDED
#define GIM_HASH_TABLE_H_INCLUDED
/*! \file gim_trimesh_data.h
\author Francisco Leon Najera
*/
/*
-----------------------------------------------------------------------------
This source file is part of GIMPACT Library.

For the latest info, see http://gimpact.sourceforge.net/

Copyright (c) 2006 Francisco Leon Najera. C.C. 80087371.
email: projectileman@yahoo.com

 This library is free software; you can redistribute it and/or
 modify it under the terms of EITHER:
   (1) The GNU Lesser General Public License as published by the Free
       Software Foundation; either version 2.1 of the License, or (at
       your option) any later version. The text of the GNU Lesser
       General Public License is included with this library in the
       file GIMPACT-LICENSE-LGPL.TXT.
   (2) The BSD-style license that is included with this library in
       the file GIMPACT-LICENSE-BSD.TXT.
   (3) The zlib/libpng license that is included with this library in
       the file GIMPACT-LICENSE-ZLIB.TXT.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
 GIMPACT-LICENSE-LGPL.TXT, GIMPACT-LICENSE-ZLIB.TXT and GIMPACT-LICENSE-BSD.TXT for more details.

-----------------------------------------------------------------------------
*/

#include "gim_radixsort.h"

#define GIM_INVALID_HASH 0xffffffff  //!< A very very high value
#define GIM_DEFAULT_HASH_TABLE_SIZE 380
#define GIM_DEFAULT_HASH_TABLE_NODE_SIZE 4
#define GIM_HASH_TABLE_GROW_FACTOR 2

#define GIM_MIN_RADIX_SORT_SIZE 860  //!< calibrated on a PIII

template <typename T>
struct GIM_HASH_TABLE_NODE
{
	GUINT m_key;
	T m_data;
	GIM_HASH_TABLE_NODE()
	{
	}

	GIM_HASH_TABLE_NODE(const GIM_HASH_TABLE_NODE& value)
	{
		m_key = value.m_key;
		m_data = value.m_data;
	}

	GIM_HASH_TABLE_NODE(GUINT key, const T& data)
	{
		m_key = key;
		m_data = data;
	}

	bool operator<(const GIM_HASH_TABLE_NODE<T>& other) const
	{
		///inverse order, further objects are first
		if (m_key < other.m_key) return true;
		return false;
	}

	bool operator>(const GIM_HASH_TABLE_NODE<T>& other) const
	{
		///inverse order, further objects are first
		if (m_key > other.m_key) return true;
		return false;
	}

	bool operator==(const GIM_HASH_TABLE_NODE<T>& other) const
	{
		///inverse order, further objects are first
		if (m_key == other.m_key) return true;
		return false;
	}
};

///Macro for getting the key
class GIM_HASH_NODE_GET_KEY
{
public:
	template <class T>
	inline GUINT operator()(const T& a)
	{
		return a.m_key;
	}
};

///Macro for comparing the key and the element
class GIM_HASH_NODE_CMP_KEY_MACRO
{
public:
	template <class T>
	inline int operator()(const T& a, GUINT key)
	{
		return ((int)(a.m_key - key));
	}
};

///Macro for comparing Hash nodes
class GIM_HASH_NODE_CMP_MACRO
{
public:
	template <class T>
	inline int operator()(const T& a, const T& b)
	{
		return ((int)(a.m_key - b.m_key));
	}
};

//! Sorting for hash table
/*!
switch automatically between quicksort and radixsort
*/
template <typename T>
void gim_sort_hash_node_array(T* array, GUINT array_count)
{
	if (array_count < GIM_MIN_RADIX_SORT_SIZE)
	{
		gim_heap_sort(array, array_count, GIM_HASH_NODE_CMP_MACRO());
	}
	else
	{
		memcopy_elements_func cmpfunc;
		gim_radix_sort(array, array_count, GIM_HASH_NODE_GET_KEY(), cmpfunc);
	}
}

// Note: assumes long is at least 32 bits.
#define GIM_NUM_PRIME 28

static const GUINT gim_prime_list[GIM_NUM_PRIME] =
	{
		53ul, 97ul, 193ul, 389ul, 769ul,
		1543ul, 3079ul, 6151ul, 12289ul, 24593ul,
		49157ul, 98317ul, 196613ul, 393241ul, 786433ul,
		1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul,
		50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul,
		1610612741ul, 3221225473ul, 4294967291ul};

inline GUINT gim_next_prime(GUINT number)
{
	//Find nearest upper prime
	GUINT result_ind = 0;
	gim_binary_search(gim_prime_list, 0, (GIM_NUM_PRIME - 2), number, result_ind);

	// inv: result_ind < 28
	return gim_prime_list[result_ind];
}

//! A compact hash table implementation
/*!
A memory aligned compact hash table that coud be treated as an array.
It could be a simple sorted array without the overhead of the hash key bucked, or could
be a formely hash table with an array of keys.
You can use switch_to_hashtable() and switch_to_sorted_array for saving space or increase speed.
</br>

<ul>
<li> if node_size = 0, then this container becomes a simple sorted array allocator. reserve_size is used for reserve memory in m_nodes.
When the array size reaches the size equivalent to 'min_hash_table_size', then it becomes a hash table by calling check_for_switching_to_hashtable.
<li> If node_size != 0, then this container becomes a hash table for ever
</ul>

*/
template <class T>
class gim_hash_table
{
protected:
	typedef GIM_HASH_TABLE_NODE<T> _node_type;

	//!The nodes
	//array< _node_type, SuperAllocator<_node_type> > m_nodes;
	gim_array<_node_type> m_nodes;
	//SuperBufferedArray< _node_type > m_nodes;
	bool m_sorted;

	///Hash table data management. The hash table has the indices to the corresponding m_nodes array
	GUINT* m_hash_table;  //!<
	GUINT m_table_size;   //!<
	GUINT m_node_size;    //!<
	GUINT m_min_hash_table_size;

	//! Returns the cell index
	inline GUINT _find_cell(GUINT hashkey)
	{
		_node_type* nodesptr = m_nodes.pointer();
		GUINT start_index = (hashkey % m_table_size) * m_node_size;
		GUINT end_index = start_index + m_node_size;

		while (start_index < end_index)
		{
			GUINT value = m_hash_table[start_index];
			if (value != GIM_INVALID_HASH)
			{
				if (nodesptr[value].m_key == hashkey) return start_index;
			}
			start_index++;
		}
		return GIM_INVALID_HASH;
	}

	//! Find the avaliable cell for the hashkey, and return an existing cell if it has the same hash key
	inline GUINT _find_avaliable_cell(GUINT hashkey)
	{
		_node_type* nodesptr = m_nodes.pointer();
		GUINT avaliable_index = GIM_INVALID_HASH;
		GUINT start_index = (hashkey % m_table_size) * m_node_size;
		GUINT end_index = start_index + m_node_size;

		while (start_index < end_index)
		{
			GUINT value = m_hash_table[start_index];
			if (value == GIM_INVALID_HASH)
			{
				if (avaliable_index == GIM_INVALID_HASH)
				{
					avaliable_index = start_index;
				}
			}
			else if (nodesptr[value].m_key == hashkey)
			{
				return start_index;
			}
			start_index++;
		}
		return avaliable_index;
	}

	//! reserves the memory for the hash table.
	/*!
    \pre hash table must be empty
    \post reserves the memory for the hash table, an initializes all elements to GIM_INVALID_HASH.
    */
	inline void _reserve_table_memory(GUINT newtablesize)
	{
		if (newtablesize == 0) return;
		if (m_node_size == 0) return;

		//Get a Prime size

		m_table_size = gim_next_prime(newtablesize);

		GUINT datasize = m_table_size * m_node_size;
		//Alloc the data buffer
		m_hash_table = (GUINT*)gim_alloc(datasize * sizeof(GUINT));
	}

	inline void _invalidate_keys()
	{
		GUINT datasize = m_table_size * m_node_size;
		for (GUINT i = 0; i < datasize; i++)
		{
			m_hash_table[i] = GIM_INVALID_HASH;  // invalidate keys
		}
	}

	//! Clear all memory for the hash table
	inline void _clear_table_memory()
	{
		if (m_hash_table == NULL) return;
		gim_free(m_hash_table);
		m_hash_table = NULL;
		m_table_size = 0;
	}

	//! Invalidates the keys (Assigning GIM_INVALID_HASH to all) Reorders the hash keys
	inline void _rehash()
	{
		_invalidate_keys();

		_node_type* nodesptr = m_nodes.pointer();
		for (GUINT i = 0; i < (GUINT)m_nodes.size(); i++)
		{
			GUINT nodekey = nodesptr[i].m_key;
			if (nodekey != GIM_INVALID_HASH)
			{
				//Search for the avaliable cell in buffer
				GUINT index = _find_avaliable_cell(nodekey);

				if (m_hash_table[index] != GIM_INVALID_HASH)
				{  //The new index is alreade used... discard this new incomming object, repeated key
					btAssert(m_hash_table[index] == nodekey);
					nodesptr[i].m_key = GIM_INVALID_HASH;
				}
				else
				{
					//;
					//Assign the value for alloc
					m_hash_table[index] = i;
				}
			}
		}
	}

	//! Resize hash table indices
	inline void _resize_table(GUINT newsize)
	{
		//Clear memory
		_clear_table_memory();
		//Alloc the data
		_reserve_table_memory(newsize);
		//Invalidate keys and rehash
		_rehash();
	}

	//! Destroy hash table memory
	inline void _destroy()
	{
		if (m_hash_table == NULL) return;
		_clear_table_memory();
	}

	//! Finds an avaliable hash table cell, and resizes the table if there isn't space
	inline GUINT _assign_hash_table_cell(GUINT hashkey)
	{
		GUINT cell_index = _find_avaliable_cell(hashkey);

		if (cell_index == GIM_INVALID_HASH)
		{
			//rehashing
			_resize_table(m_table_size + 1);
			GUINT cell_index = _find_avaliable_cell(hashkey);
			btAssert(cell_index != GIM_INVALID_HASH);
		}
		return cell_index;
	}

	//! erase by index in hash table
	inline bool _erase_by_index_hash_table(GUINT index)
	{
		if (index >= m_nodes.size()) return false;
		if (m_nodes[index].m_key != GIM_INVALID_HASH)
		{
			//Search for the avaliable cell in buffer
			GUINT cell_index = _find_cell(m_nodes[index].m_key);

			btAssert(cell_index != GIM_INVALID_HASH);
			btAssert(m_hash_table[cell_index] == index);

			m_hash_table[cell_index] = GIM_INVALID_HASH;
		}

		return this->_erase_unsorted(index);
	}

	//! erase by key in hash table
	inline bool _erase_hash_table(GUINT hashkey)
	{
		if (hashkey == GIM_INVALID_HASH) return false;

		//Search for the avaliable cell in buffer
		GUINT cell_index = _find_cell(hashkey);
		if (cell_index == GIM_INVALID_HASH) return false;

		GUINT index = m_hash_table[cell_index];
		m_hash_table[cell_index] = GIM_INVALID_HASH;

		return this->_erase_unsorted(index);
	}

	//! insert an element in hash table
	/*!
    If the element exists, this won't insert the element
    \return the index in the array of the existing element,or GIM_INVALID_HASH if the element has been inserted
    If so, the element has been inserted at the last position of the array.
    */
	inline GUINT _insert_hash_table(GUINT hashkey, const T& value)
	{
		if (hashkey == GIM_INVALID_HASH)
		{
			//Insert anyway
			_insert_unsorted(hashkey, value);
			return GIM_INVALID_HASH;
		}

		GUINT cell_index = _assign_hash_table_cell(hashkey);

		GUINT value_key = m_hash_table[cell_index];

		if (value_key != GIM_INVALID_HASH) return value_key;  // Not overrited

		m_hash_table[cell_index] = m_nodes.size();

		_insert_unsorted(hashkey, value);
		return GIM_INVALID_HASH;
	}

	//! insert an element in hash table.
	/*!
    If the element exists, this replaces the element.
    \return the index in the array of the existing element,or GIM_INVALID_HASH if the element has been inserted
    If so, the element has been inserted at the last position of the array.
    */
	inline GUINT _insert_hash_table_replace(GUINT hashkey, const T& value)
	{
		if (hashkey == GIM_INVALID_HASH)
		{
			//Insert anyway
			_insert_unsorted(hashkey, value);
			return GIM_INVALID_HASH;
		}

		GUINT cell_index = _assign_hash_table_cell(hashkey);

		GUINT value_key = m_hash_table[cell_index];

		if (value_key != GIM_INVALID_HASH)
		{  //replaces the existing
			m_nodes[value_key] = _node_type(hashkey, value);
			return value_key;  // index of the replaced element
		}

		m_hash_table[cell_index] = m_nodes.size();

		_insert_unsorted(hashkey, value);
		return GIM_INVALID_HASH;
	}

	///Sorted array data management. The hash table has the indices to the corresponding m_nodes array
	inline bool _erase_sorted(GUINT index)
	{
		if (index >= (GUINT)m_nodes.size()) return false;
		m_nodes.erase_sorted(index);
		if (m_nodes.size() < 2) m_sorted = false;
		return true;
	}

	//! faster, but unsorted
	inline bool _erase_unsorted(GUINT index)
	{
		if (index >= m_nodes.size()) return false;

		GUINT lastindex = m_nodes.size() - 1;
		if (index < lastindex && m_hash_table != 0)
		{
			GUINT hashkey = m_nodes[lastindex].m_key;
			if (hashkey != GIM_INVALID_HASH)
			{
				//update the new position of the last element
				GUINT cell_index = _find_cell(hashkey);
				btAssert(cell_index != GIM_INVALID_HASH);
				//new position of the last element which will be swaped
				m_hash_table[cell_index] = index;
			}
		}
		m_nodes.erase(index);
		m_sorted = false;
		return true;
	}

	//! Insert in position ordered
	/*!
    Also checks if it is needed to transform this container to a hash table, by calling check_for_switching_to_hashtable
    */
	inline void _insert_in_pos(GUINT hashkey, const T& value, GUINT pos)
	{
		m_nodes.insert(_node_type(hashkey, value), pos);
		this->check_for_switching_to_hashtable();
	}

	//! Insert an element in an ordered array
	inline GUINT _insert_sorted(GUINT hashkey, const T& value)
	{
		if (hashkey == GIM_INVALID_HASH || size() == 0)
		{
			m_nodes.push_back(_node_type(hashkey, value));
			return GIM_INVALID_HASH;
		}
		//Insert at last position
		//Sort element

		GUINT result_ind = 0;
		GUINT last_index = m_nodes.size() - 1;
		_node_type* ptr = m_nodes.pointer();

		bool found = gim_binary_search_ex(
			ptr, 0, last_index, result_ind, hashkey, GIM_HASH_NODE_CMP_KEY_MACRO());

		//Insert before found index
		if (found)
		{
			return result_ind;
		}
		else
		{
			_insert_in_pos(hashkey, value, result_ind);
		}
		return GIM_INVALID_HASH;
	}

	inline GUINT _insert_sorted_replace(GUINT hashkey, const T& value)
	{
		if (hashkey == GIM_INVALID_HASH || size() == 0)
		{
			m_nodes.push_back(_node_type(hashkey, value));
			return GIM_INVALID_HASH;
		}
		//Insert at last position
		//Sort element
		GUINT result_ind;
		GUINT last_index = m_nodes.size() - 1;
		_node_type* ptr = m_nodes.pointer();

		bool found = gim_binary_search_ex(
			ptr, 0, last_index, result_ind, hashkey, GIM_HASH_NODE_CMP_KEY_MACRO());

		//Insert before found index
		if (found)
		{
			m_nodes[result_ind] = _node_type(hashkey, value);
		}
		else
		{
			_insert_in_pos(hashkey, value, result_ind);
		}
		return result_ind;
	}

	//! Fast insertion in m_nodes array
	inline GUINT _insert_unsorted(GUINT hashkey, const T& value)
	{
		m_nodes.push_back(_node_type(hashkey, value));
		m_sorted = false;
		return GIM_INVALID_HASH;
	}

public:
	/*!
        <li> if node_size = 0, then this container becomes a simple sorted array allocator. reserve_size is used for reserve memory in m_nodes.
        When the array size reaches the size equivalent to 'min_hash_table_size', then it becomes a hash table by calling check_for_switching_to_hashtable.
        <li> If node_size != 0, then this container becomes a hash table for ever
        </ul>
    */
	gim_hash_table(GUINT reserve_size = GIM_DEFAULT_HASH_TABLE_SIZE,
				   GUINT node_size = GIM_DEFAULT_HASH_TABLE_NODE_SIZE,
				   GUINT min_hash_table_size = GIM_INVALID_HASH)
	{
		m_hash_table = NULL;
		m_table_size = 0;
		m_sorted = false;
		m_node_size = node_size;
		m_min_hash_table_size = min_hash_table_size;

		if (m_node_size != 0)
		{
			if (reserve_size != 0)
			{
				m_nodes.reserve(reserve_size);
				_reserve_table_memory(reserve_size);
				_invalidate_keys();
			}
			else
			{
				m_nodes.reserve(GIM_DEFAULT_HASH_TABLE_SIZE);
				_reserve_table_memory(GIM_DEFAULT_HASH_TABLE_SIZE);
				_invalidate_keys();
			}
		}
		else if (reserve_size != 0)
		{
			m_nodes.reserve(reserve_size);
		}
	}

	~gim_hash_table()
	{
		_destroy();
	}

	inline bool is_hash_table()
	{
		if (m_hash_table) return true;
		return false;
	}

	inline bool is_sorted()
	{
		if (size() < 2) return true;
		return m_sorted;
	}

	bool sort()
	{
		if (is_sorted()) return true;
		if (m_nodes.size() < 2) return false;

		_node_type* ptr = m_nodes.pointer();
		GUINT siz = m_nodes.size();
		gim_sort_hash_node_array(ptr, siz);
		m_sorted = true;

		if (m_hash_table)
		{
			_rehash();
		}
		return true;
	}

	bool switch_to_hashtable()
	{
		if (m_hash_table) return false;
		if (m_node_size == 0) m_node_size = GIM_DEFAULT_HASH_TABLE_NODE_SIZE;
		if (m_nodes.size() < GIM_DEFAULT_HASH_TABLE_SIZE)
		{
			_resize_table(GIM_DEFAULT_HASH_TABLE_SIZE);
		}
		else
		{
			_resize_table(m_nodes.size() + 1);
		}

		return true;
	}

	bool switch_to_sorted_array()
	{
		if (m_hash_table == NULL) return true;
		_clear_table_memory();
		return sort();
	}

	//!If the container reaches the
	bool check_for_switching_to_hashtable()
	{
		if (this->m_hash_table) return true;

		if (!(m_nodes.size() < m_min_hash_table_size))
		{
			if (m_node_size == 0)
			{
				m_node_size = GIM_DEFAULT_HASH_TABLE_NODE_SIZE;
			}

			_resize_table(m_nodes.size() + 1);
			return true;
		}
		return false;
	}

	inline void set_sorted(bool value)
	{
		m_sorted = value;
	}

	//! Retrieves the amount of keys.
	inline GUINT size() const
	{
		return m_nodes.size();
	}

	//! Retrieves the hash key.
	inline GUINT get_key(GUINT index) const
	{
		return m_nodes[index].m_key;
	}

	//! Retrieves the value by index
	/*!
    */
	inline T* get_value_by_index(GUINT index)
	{
		return &m_nodes[index].m_data;
	}

	inline const T& operator[](GUINT index) const
	{
		return m_nodes[index].m_data;
	}

	inline T& operator[](GUINT index)
	{
		return m_nodes[index].m_data;
	}

	//! Finds the index of the element with the key
	/*!
    \return the index in the array of the existing element,or GIM_INVALID_HASH if the element has been inserted
    If so, the element has been inserted at the last position of the array.
    */
	inline GUINT find(GUINT hashkey)
	{
		if (m_hash_table)
		{
			GUINT cell_index = _find_cell(hashkey);
			if (cell_index == GIM_INVALID_HASH) return GIM_INVALID_HASH;
			return m_hash_table[cell_index];
		}
		GUINT last_index = m_nodes.size();
		if (last_index < 2)
		{
			if (last_index == 0) return GIM_INVALID_HASH;
			if (m_nodes[0].m_key == hashkey) return 0;
			return GIM_INVALID_HASH;
		}
		else if (m_sorted)
		{
			//Binary search
			GUINT result_ind = 0;
			last_index--;
			_node_type* ptr = m_nodes.pointer();

			bool found = gim_binary_search_ex(ptr, 0, last_index, result_ind, hashkey, GIM_HASH_NODE_CMP_KEY_MACRO());

			if (found) return result_ind;
		}
		return GIM_INVALID_HASH;
	}

	//! Retrieves the value associated with the index
	/*!
    \return the found element, or null
    */
	inline T* get_value(GUINT hashkey)
	{
		GUINT index = find(hashkey);
		if (index == GIM_INVALID_HASH) return NULL;
		return &m_nodes[index].m_data;
	}

	/*!
    */
	inline bool erase_by_index(GUINT index)
	{
		if (index > m_nodes.size()) return false;

		if (m_hash_table == NULL)
		{
			if (is_sorted())
			{
				return this->_erase_sorted(index);
			}
			else
			{
				return this->_erase_unsorted(index);
			}
		}
		else
		{
			return this->_erase_by_index_hash_table(index);
		}
		return false;
	}

	inline bool erase_by_index_unsorted(GUINT index)
	{
		if (index > m_nodes.size()) return false;

		if (m_hash_table == NULL)
		{
			return this->_erase_unsorted(index);
		}
		else
		{
			return this->_erase_by_index_hash_table(index);
		}
		return false;
	}

	/*!

    */
	inline bool erase_by_key(GUINT hashkey)
	{
		if (size() == 0) return false;

		if (m_hash_table)
		{
			return this->_erase_hash_table(hashkey);
		}
		//Binary search

		if (is_sorted() == false) return false;

		GUINT result_ind = find(hashkey);
		if (result_ind != GIM_INVALID_HASH)
		{
			return this->_erase_sorted(result_ind);
		}
		return false;
	}

	void clear()
	{
		m_nodes.clear();

		if (m_hash_table == NULL) return;
		GUINT datasize = m_table_size * m_node_size;
		//Initialize the hashkeys.
		GUINT i;
		for (i = 0; i < datasize; i++)
		{
			m_hash_table[i] = GIM_INVALID_HASH;  // invalidate keys
		}
		m_sorted = false;
	}

	//! Insert an element into the hash
	/*!
    \return If GIM_INVALID_HASH, the object has been inserted succesfully. Else it returns the position
    of the existing element.
    */
	inline GUINT insert(GUINT hashkey, const T& element)
	{
		if (m_hash_table)
		{
			return this->_insert_hash_table(hashkey, element);
		}
		if (this->is_sorted())
		{
			return this->_insert_sorted(hashkey, element);
		}
		return this->_insert_unsorted(hashkey, element);
	}

	//! Insert an element into the hash, and could overrite an existing object with the same hash.
	/*!
    \return If GIM_INVALID_HASH, the object has been inserted succesfully. Else it returns the position
    of the replaced element.
    */
	inline GUINT insert_override(GUINT hashkey, const T& element)
	{
		if (m_hash_table)
		{
			return this->_insert_hash_table_replace(hashkey, element);
		}
		if (this->is_sorted())
		{
			return this->_insert_sorted_replace(hashkey, element);
		}
		this->_insert_unsorted(hashkey, element);
		return m_nodes.size();
	}

	//! Insert an element into the hash,But if this container is a sorted array, this inserts it unsorted
	/*!
    */
	inline GUINT insert_unsorted(GUINT hashkey, const T& element)
	{
		if (m_hash_table)
		{
			return this->_insert_hash_table(hashkey, element);
		}
		return this->_insert_unsorted(hashkey, element);
	}
};

#endif  // GIM_CONTAINERS_H_INCLUDED