summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletCollision/Gimpact/gim_box_collision.h
blob: a051b4fdbf2a365ea34e736cd3ca22d28e96e857 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
#ifndef GIM_BOX_COLLISION_H_INCLUDED
#define GIM_BOX_COLLISION_H_INCLUDED

/*! \file gim_box_collision.h
\author Francisco Leon Najera
*/
/*
-----------------------------------------------------------------------------
This source file is part of GIMPACT Library.

For the latest info, see http://gimpact.sourceforge.net/

Copyright (c) 2006 Francisco Leon Najera. C.C. 80087371.
email: projectileman@yahoo.com

 This library is free software; you can redistribute it and/or
 modify it under the terms of EITHER:
   (1) The GNU Lesser General Public License as published by the Free
       Software Foundation; either version 2.1 of the License, or (at
       your option) any later version. The text of the GNU Lesser
       General Public License is included with this library in the
       file GIMPACT-LICENSE-LGPL.TXT.
   (2) The BSD-style license that is included with this library in
       the file GIMPACT-LICENSE-BSD.TXT.
   (3) The zlib/libpng license that is included with this library in
       the file GIMPACT-LICENSE-ZLIB.TXT.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
 GIMPACT-LICENSE-LGPL.TXT, GIMPACT-LICENSE-ZLIB.TXT and GIMPACT-LICENSE-BSD.TXT for more details.

-----------------------------------------------------------------------------
*/
#include "gim_basic_geometry_operations.h"
#include "LinearMath/btTransform.h"



//SIMD_FORCE_INLINE bool test_cross_edge_box(
//	const btVector3 & edge,
//	const btVector3 & absolute_edge,
//	const btVector3 & pointa,
//	const btVector3 & pointb, const btVector3 & extend,
//	int dir_index0,
//	int dir_index1
//	int component_index0,
//	int component_index1)
//{
//	// dir coords are -z and y
//
//	const btScalar dir0 = -edge[dir_index0];
//	const btScalar dir1 = edge[dir_index1];
//	btScalar pmin = pointa[component_index0]*dir0 + pointa[component_index1]*dir1;
//	btScalar pmax = pointb[component_index0]*dir0 + pointb[component_index1]*dir1;
//	//find minmax
//	if(pmin>pmax)
//	{
//		GIM_SWAP_NUMBERS(pmin,pmax);
//	}
//	//find extends
//	const btScalar rad = extend[component_index0] * absolute_edge[dir_index0] +
//					extend[component_index1] * absolute_edge[dir_index1];
//
//	if(pmin>rad || -rad>pmax) return false;
//	return true;
//}
//
//SIMD_FORCE_INLINE bool test_cross_edge_box_X_axis(
//	const btVector3 & edge,
//	const btVector3 & absolute_edge,
//	const btVector3 & pointa,
//	const btVector3 & pointb, btVector3 & extend)
//{
//
//	return test_cross_edge_box(edge,absolute_edge,pointa,pointb,extend,2,1,1,2);
//}
//
//
//SIMD_FORCE_INLINE bool test_cross_edge_box_Y_axis(
//	const btVector3 & edge,
//	const btVector3 & absolute_edge,
//	const btVector3 & pointa,
//	const btVector3 & pointb, btVector3 & extend)
//{
//
//	return test_cross_edge_box(edge,absolute_edge,pointa,pointb,extend,0,2,2,0);
//}
//
//SIMD_FORCE_INLINE bool test_cross_edge_box_Z_axis(
//	const btVector3 & edge,
//	const btVector3 & absolute_edge,
//	const btVector3 & pointa,
//	const btVector3 & pointb, btVector3 & extend)
//{
//
//	return test_cross_edge_box(edge,absolute_edge,pointa,pointb,extend,1,0,0,1);
//}

#ifndef TEST_CROSS_EDGE_BOX_MCR

#define TEST_CROSS_EDGE_BOX_MCR(edge,absolute_edge,pointa,pointb,_extend,i_dir_0,i_dir_1,i_comp_0,i_comp_1)\
{\
	const btScalar dir0 = -edge[i_dir_0];\
	const btScalar dir1 = edge[i_dir_1];\
	btScalar pmin = pointa[i_comp_0]*dir0 + pointa[i_comp_1]*dir1;\
	btScalar pmax = pointb[i_comp_0]*dir0 + pointb[i_comp_1]*dir1;\
	if(pmin>pmax)\
	{\
		GIM_SWAP_NUMBERS(pmin,pmax); \
	}\
	const btScalar abs_dir0 = absolute_edge[i_dir_0];\
	const btScalar abs_dir1 = absolute_edge[i_dir_1];\
	const btScalar rad = _extend[i_comp_0] * abs_dir0 + _extend[i_comp_1] * abs_dir1;\
	if(pmin>rad || -rad>pmax) return false;\
}\

#endif

#define TEST_CROSS_EDGE_BOX_X_AXIS_MCR(edge,absolute_edge,pointa,pointb,_extend)\
{\
	TEST_CROSS_EDGE_BOX_MCR(edge,absolute_edge,pointa,pointb,_extend,2,1,1,2);\
}\

#define TEST_CROSS_EDGE_BOX_Y_AXIS_MCR(edge,absolute_edge,pointa,pointb,_extend)\
{\
	TEST_CROSS_EDGE_BOX_MCR(edge,absolute_edge,pointa,pointb,_extend,0,2,2,0);\
}\

#define TEST_CROSS_EDGE_BOX_Z_AXIS_MCR(edge,absolute_edge,pointa,pointb,_extend)\
{\
	TEST_CROSS_EDGE_BOX_MCR(edge,absolute_edge,pointa,pointb,_extend,1,0,0,1);\
}\



//!  Class for transforming a model1 to the space of model0
class GIM_BOX_BOX_TRANSFORM_CACHE
{
public:
    btVector3  m_T1to0;//!< Transforms translation of model1 to model 0
	btMatrix3x3 m_R1to0;//!< Transforms Rotation of model1 to model 0, equal  to R0' * R1
	btMatrix3x3 m_AR;//!< Absolute value of m_R1to0

	SIMD_FORCE_INLINE void calc_absolute_matrix()
	{
		static const btVector3 vepsi(1e-6f,1e-6f,1e-6f);
		m_AR[0] = vepsi + m_R1to0[0].absolute();
		m_AR[1] = vepsi + m_R1to0[1].absolute();
		m_AR[2] = vepsi + m_R1to0[2].absolute();
	}

	GIM_BOX_BOX_TRANSFORM_CACHE()
	{
	}


	GIM_BOX_BOX_TRANSFORM_CACHE(mat4f  trans1_to_0)
	{
		COPY_MATRIX_3X3(m_R1to0,trans1_to_0)
        MAT_GET_TRANSLATION(trans1_to_0,m_T1to0)
		calc_absolute_matrix();
	}

	//! Calc the transformation relative  1 to 0. Inverts matrics by transposing
	SIMD_FORCE_INLINE void calc_from_homogenic(const btTransform & trans0,const btTransform & trans1)
	{

		m_R1to0 = trans0.getBasis().transpose();
		m_T1to0 = m_R1to0 * (-trans0.getOrigin());

		m_T1to0 += m_R1to0*trans1.getOrigin();
		m_R1to0 *= trans1.getBasis();

		calc_absolute_matrix();
	}

	//! Calcs the full invertion of the matrices. Useful for scaling matrices
	SIMD_FORCE_INLINE void calc_from_full_invert(const btTransform & trans0,const btTransform & trans1)
	{
		m_R1to0 = trans0.getBasis().inverse();
		m_T1to0 = m_R1to0 * (-trans0.getOrigin());

		m_T1to0 += m_R1to0*trans1.getOrigin();
		m_R1to0 *= trans1.getBasis();

		calc_absolute_matrix();
	}

	SIMD_FORCE_INLINE btVector3 transform(const btVector3 & point)
	{
        return point.dot3(m_R1to0[0], m_R1to0[1], m_R1to0[2]) + m_T1to0;
	}
};

#ifndef BOX_PLANE_EPSILON
#define BOX_PLANE_EPSILON 0.000001f
#endif

//! Axis aligned box
class GIM_AABB
{
public:
	btVector3 m_min;
	btVector3 m_max;

	GIM_AABB()
	{}


	GIM_AABB(const btVector3 & V1,
			 const btVector3 & V2,
			 const btVector3 & V3)
	{
		m_min[0] = GIM_MIN3(V1[0],V2[0],V3[0]);
		m_min[1] = GIM_MIN3(V1[1],V2[1],V3[1]);
		m_min[2] = GIM_MIN3(V1[2],V2[2],V3[2]);

		m_max[0] = GIM_MAX3(V1[0],V2[0],V3[0]);
		m_max[1] = GIM_MAX3(V1[1],V2[1],V3[1]);
		m_max[2] = GIM_MAX3(V1[2],V2[2],V3[2]);
	}

	GIM_AABB(const btVector3 & V1,
			 const btVector3 & V2,
			 const btVector3 & V3,
			 GREAL margin)
	{
		m_min[0] = GIM_MIN3(V1[0],V2[0],V3[0]);
		m_min[1] = GIM_MIN3(V1[1],V2[1],V3[1]);
		m_min[2] = GIM_MIN3(V1[2],V2[2],V3[2]);

		m_max[0] = GIM_MAX3(V1[0],V2[0],V3[0]);
		m_max[1] = GIM_MAX3(V1[1],V2[1],V3[1]);
		m_max[2] = GIM_MAX3(V1[2],V2[2],V3[2]);

		m_min[0] -= margin;
		m_min[1] -= margin;
		m_min[2] -= margin;
		m_max[0] += margin;
		m_max[1] += margin;
		m_max[2] += margin;
	}

	GIM_AABB(const GIM_AABB &other):
		m_min(other.m_min),m_max(other.m_max)
	{
	}

	GIM_AABB(const GIM_AABB &other,btScalar margin ):
		m_min(other.m_min),m_max(other.m_max)
	{
		m_min[0] -= margin;
		m_min[1] -= margin;
		m_min[2] -= margin;
		m_max[0] += margin;
		m_max[1] += margin;
		m_max[2] += margin;
	}

	SIMD_FORCE_INLINE void invalidate()
	{
		m_min[0] = G_REAL_INFINITY;
		m_min[1] = G_REAL_INFINITY;
		m_min[2] = G_REAL_INFINITY;
		m_max[0] = -G_REAL_INFINITY;
		m_max[1] = -G_REAL_INFINITY;
		m_max[2] = -G_REAL_INFINITY;
	}

	SIMD_FORCE_INLINE void increment_margin(btScalar margin)
	{
		m_min[0] -= margin;
		m_min[1] -= margin;
		m_min[2] -= margin;
		m_max[0] += margin;
		m_max[1] += margin;
		m_max[2] += margin;
	}

	SIMD_FORCE_INLINE void copy_with_margin(const GIM_AABB &other, btScalar margin)
	{
		m_min[0] = other.m_min[0] - margin;
		m_min[1] = other.m_min[1] - margin;
		m_min[2] = other.m_min[2] - margin;

		m_max[0] = other.m_max[0] + margin;
		m_max[1] = other.m_max[1] + margin;
		m_max[2] = other.m_max[2] + margin;
	}

	template<typename CLASS_POINT>
	SIMD_FORCE_INLINE void calc_from_triangle(
							const CLASS_POINT & V1,
							const CLASS_POINT & V2,
							const CLASS_POINT & V3)
	{
		m_min[0] = GIM_MIN3(V1[0],V2[0],V3[0]);
		m_min[1] = GIM_MIN3(V1[1],V2[1],V3[1]);
		m_min[2] = GIM_MIN3(V1[2],V2[2],V3[2]);

		m_max[0] = GIM_MAX3(V1[0],V2[0],V3[0]);
		m_max[1] = GIM_MAX3(V1[1],V2[1],V3[1]);
		m_max[2] = GIM_MAX3(V1[2],V2[2],V3[2]);
	}

	template<typename CLASS_POINT>
	SIMD_FORCE_INLINE void calc_from_triangle_margin(
							const CLASS_POINT & V1,
							const CLASS_POINT & V2,
							const CLASS_POINT & V3, btScalar margin)
	{
		m_min[0] = GIM_MIN3(V1[0],V2[0],V3[0]);
		m_min[1] = GIM_MIN3(V1[1],V2[1],V3[1]);
		m_min[2] = GIM_MIN3(V1[2],V2[2],V3[2]);

		m_max[0] = GIM_MAX3(V1[0],V2[0],V3[0]);
		m_max[1] = GIM_MAX3(V1[1],V2[1],V3[1]);
		m_max[2] = GIM_MAX3(V1[2],V2[2],V3[2]);

		m_min[0] -= margin;
		m_min[1] -= margin;
		m_min[2] -= margin;
		m_max[0] += margin;
		m_max[1] += margin;
		m_max[2] += margin;
	}

	//! Apply a transform to an AABB
	SIMD_FORCE_INLINE void appy_transform(const btTransform & trans)
	{
		btVector3 center = (m_max+m_min)*0.5f;
		btVector3 extends = m_max - center;
		// Compute new center
		center = trans(center);

        btVector3 textends = extends.dot3(trans.getBasis().getRow(0).absolute(), 
                                          trans.getBasis().getRow(1).absolute(), 
                                          trans.getBasis().getRow(2).absolute());
        
		m_min = center - textends;
		m_max = center + textends;
	}

	//! Merges a Box
	SIMD_FORCE_INLINE void merge(const GIM_AABB & box)
	{
		m_min[0] = GIM_MIN(m_min[0],box.m_min[0]);
		m_min[1] = GIM_MIN(m_min[1],box.m_min[1]);
		m_min[2] = GIM_MIN(m_min[2],box.m_min[2]);

		m_max[0] = GIM_MAX(m_max[0],box.m_max[0]);
		m_max[1] = GIM_MAX(m_max[1],box.m_max[1]);
		m_max[2] = GIM_MAX(m_max[2],box.m_max[2]);
	}

	//! Merges a point
	template<typename CLASS_POINT>
	SIMD_FORCE_INLINE void merge_point(const CLASS_POINT & point)
	{
		m_min[0] = GIM_MIN(m_min[0],point[0]);
		m_min[1] = GIM_MIN(m_min[1],point[1]);
		m_min[2] = GIM_MIN(m_min[2],point[2]);

		m_max[0] = GIM_MAX(m_max[0],point[0]);
		m_max[1] = GIM_MAX(m_max[1],point[1]);
		m_max[2] = GIM_MAX(m_max[2],point[2]);
	}

	//! Gets the extend and center
	SIMD_FORCE_INLINE void get_center_extend(btVector3 & center,btVector3 & extend)  const
	{
		center = (m_max+m_min)*0.5f;
		extend = m_max - center;
	}

	//! Finds the intersecting box between this box and the other.
	SIMD_FORCE_INLINE void find_intersection(const GIM_AABB & other, GIM_AABB & intersection)  const
	{
		intersection.m_min[0] = GIM_MAX(other.m_min[0],m_min[0]);
		intersection.m_min[1] = GIM_MAX(other.m_min[1],m_min[1]);
		intersection.m_min[2] = GIM_MAX(other.m_min[2],m_min[2]);

		intersection.m_max[0] = GIM_MIN(other.m_max[0],m_max[0]);
		intersection.m_max[1] = GIM_MIN(other.m_max[1],m_max[1]);
		intersection.m_max[2] = GIM_MIN(other.m_max[2],m_max[2]);
	}


	SIMD_FORCE_INLINE bool has_collision(const GIM_AABB & other) const
	{
		if(m_min[0] > other.m_max[0] ||
		   m_max[0] < other.m_min[0] ||
		   m_min[1] > other.m_max[1] ||
		   m_max[1] < other.m_min[1] ||
		   m_min[2] > other.m_max[2] ||
		   m_max[2] < other.m_min[2])
		{
			return false;
		}
		return true;
	}

	/*! \brief Finds the Ray intersection parameter.
	\param aabb Aligned box
	\param vorigin A vec3f with the origin of the ray
	\param vdir A vec3f with the direction of the ray
	*/
	SIMD_FORCE_INLINE bool collide_ray(const btVector3 & vorigin,const btVector3 & vdir)
	{
		btVector3 extents,center;
		this->get_center_extend(center,extents);;

		btScalar Dx = vorigin[0] - center[0];
		if(GIM_GREATER(Dx, extents[0]) && Dx*vdir[0]>=0.0f)	return false;
		btScalar Dy = vorigin[1] - center[1];
		if(GIM_GREATER(Dy, extents[1]) && Dy*vdir[1]>=0.0f)	return false;
		btScalar Dz = vorigin[2] - center[2];
		if(GIM_GREATER(Dz, extents[2]) && Dz*vdir[2]>=0.0f)	return false;


		btScalar f = vdir[1] * Dz - vdir[2] * Dy;
		if(btFabs(f) > extents[1]*btFabs(vdir[2]) + extents[2]*btFabs(vdir[1])) return false;
		f = vdir[2] * Dx - vdir[0] * Dz;
		if(btFabs(f) > extents[0]*btFabs(vdir[2]) + extents[2]*btFabs(vdir[0]))return false;
		f = vdir[0] * Dy - vdir[1] * Dx;
		if(btFabs(f) > extents[0]*btFabs(vdir[1]) + extents[1]*btFabs(vdir[0]))return false;
		return true;
	}


	SIMD_FORCE_INLINE void projection_interval(const btVector3 & direction, btScalar &vmin, btScalar &vmax) const
	{
		btVector3 center = (m_max+m_min)*0.5f;
		btVector3 extend = m_max-center;

		btScalar _fOrigin =  direction.dot(center);
		btScalar _fMaximumExtent = extend.dot(direction.absolute());
		vmin = _fOrigin - _fMaximumExtent;
		vmax = _fOrigin + _fMaximumExtent;
	}

	SIMD_FORCE_INLINE ePLANE_INTERSECTION_TYPE plane_classify(const btVector4 &plane) const
	{
		btScalar _fmin,_fmax;
		this->projection_interval(plane,_fmin,_fmax);

		if(plane[3] > _fmax + BOX_PLANE_EPSILON)
		{
			return G_BACK_PLANE; // 0
		}

		if(plane[3]+BOX_PLANE_EPSILON >=_fmin)
		{
			return G_COLLIDE_PLANE; //1
		}
		return G_FRONT_PLANE;//2
	}

	SIMD_FORCE_INLINE bool overlapping_trans_conservative(const GIM_AABB & box, btTransform & trans1_to_0)
	{
		GIM_AABB tbox = box;
		tbox.appy_transform(trans1_to_0);
		return has_collision(tbox);
	}

	//! transcache is the transformation cache from box to this AABB
	SIMD_FORCE_INLINE bool overlapping_trans_cache(
		const GIM_AABB & box,const GIM_BOX_BOX_TRANSFORM_CACHE & transcache, bool fulltest)
	{

		//Taken from OPCODE
		btVector3 ea,eb;//extends
		btVector3 ca,cb;//extends
		get_center_extend(ca,ea);
		box.get_center_extend(cb,eb);


		btVector3 T;
		btScalar t,t2;
		int i;

		// Class I : A's basis vectors
		for(i=0;i<3;i++)
		{
			T[i] =  transcache.m_R1to0[i].dot(cb) + transcache.m_T1to0[i] - ca[i];
			t = transcache.m_AR[i].dot(eb) + ea[i];
			if(GIM_GREATER(T[i], t))	return false;
		}
		// Class II : B's basis vectors
		for(i=0;i<3;i++)
		{
			t = MAT_DOT_COL(transcache.m_R1to0,T,i);
			t2 = MAT_DOT_COL(transcache.m_AR,ea,i) + eb[i];
			if(GIM_GREATER(t,t2))	return false;
		}
		// Class III : 9 cross products
		if(fulltest)
		{
			int j,m,n,o,p,q,r;
			for(i=0;i<3;i++)
			{
				m = (i+1)%3;
				n = (i+2)%3;
				o = i==0?1:0;
				p = i==2?1:2;
				for(j=0;j<3;j++)
				{
					q = j==2?1:2;
					r = j==0?1:0;
					t = T[n]*transcache.m_R1to0[m][j] - T[m]*transcache.m_R1to0[n][j];
					t2 = ea[o]*transcache.m_AR[p][j] + ea[p]*transcache.m_AR[o][j] +
						eb[r]*transcache.m_AR[i][q] + eb[q]*transcache.m_AR[i][r];
					if(GIM_GREATER(t,t2))	return false;
				}
			}
		}
		return true;
	}

	//! Simple test for planes.
	SIMD_FORCE_INLINE bool collide_plane(
		const btVector4 & plane)
	{
		ePLANE_INTERSECTION_TYPE classify = plane_classify(plane);
		return (classify == G_COLLIDE_PLANE);
	}

	//! test for a triangle, with edges
	SIMD_FORCE_INLINE bool collide_triangle_exact(
		const btVector3 & p1,
		const btVector3 & p2,
		const btVector3 & p3,
		const btVector4 & triangle_plane)
	{
		if(!collide_plane(triangle_plane)) return false;

		btVector3 center,extends;
		this->get_center_extend(center,extends);

		const btVector3 v1(p1 - center);
		const btVector3 v2(p2 - center);
		const btVector3 v3(p3 - center);

		//First axis
		btVector3 diff(v2 - v1);
		btVector3 abs_diff = diff.absolute();
		//Test With X axis
		TEST_CROSS_EDGE_BOX_X_AXIS_MCR(diff,abs_diff,v1,v3,extends);
		//Test With Y axis
		TEST_CROSS_EDGE_BOX_Y_AXIS_MCR(diff,abs_diff,v1,v3,extends);
		//Test With Z axis
		TEST_CROSS_EDGE_BOX_Z_AXIS_MCR(diff,abs_diff,v1,v3,extends);


		diff = v3 - v2;
		abs_diff = diff.absolute();
		//Test With X axis
		TEST_CROSS_EDGE_BOX_X_AXIS_MCR(diff,abs_diff,v2,v1,extends);
		//Test With Y axis
		TEST_CROSS_EDGE_BOX_Y_AXIS_MCR(diff,abs_diff,v2,v1,extends);
		//Test With Z axis
		TEST_CROSS_EDGE_BOX_Z_AXIS_MCR(diff,abs_diff,v2,v1,extends);

		diff = v1 - v3;
		abs_diff = diff.absolute();
		//Test With X axis
		TEST_CROSS_EDGE_BOX_X_AXIS_MCR(diff,abs_diff,v3,v2,extends);
		//Test With Y axis
		TEST_CROSS_EDGE_BOX_Y_AXIS_MCR(diff,abs_diff,v3,v2,extends);
		//Test With Z axis
		TEST_CROSS_EDGE_BOX_Z_AXIS_MCR(diff,abs_diff,v3,v2,extends);

		return true;
	}
};

#ifndef BT_BOX_COLLISION_H_INCLUDED
//! Compairison of transformation objects
SIMD_FORCE_INLINE bool btCompareTransformsEqual(const btTransform & t1,const btTransform & t2)
{
	if(!(t1.getOrigin() == t2.getOrigin()) ) return false;

	if(!(t1.getBasis().getRow(0) == t2.getBasis().getRow(0)) ) return false;
	if(!(t1.getBasis().getRow(1) == t2.getBasis().getRow(1)) ) return false;
	if(!(t1.getBasis().getRow(2) == t2.getBasis().getRow(2)) ) return false;
	return true;
}
#endif



#endif // GIM_BOX_COLLISION_H_INCLUDED