summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletCollision/CollisionShapes/btTriangleInfoMap.h
blob: 64275895901112a3aec79886a9e6b35df56b3697 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2010 Erwin Coumans  http://bulletphysics.org

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#ifndef _BT_TRIANGLE_INFO_MAP_H
#define _BT_TRIANGLE_INFO_MAP_H


#include "LinearMath/btHashMap.h"
#include "LinearMath/btSerializer.h"


///for btTriangleInfo m_flags
#define TRI_INFO_V0V1_CONVEX 1
#define TRI_INFO_V1V2_CONVEX 2
#define TRI_INFO_V2V0_CONVEX 4

#define TRI_INFO_V0V1_SWAP_NORMALB 8
#define TRI_INFO_V1V2_SWAP_NORMALB 16
#define TRI_INFO_V2V0_SWAP_NORMALB 32


///The btTriangleInfo structure stores information to adjust collision normals to avoid collisions against internal edges
///it can be generated using 
struct	btTriangleInfo
{
	btTriangleInfo()
	{
		m_edgeV0V1Angle = SIMD_2_PI;
		m_edgeV1V2Angle = SIMD_2_PI;
		m_edgeV2V0Angle = SIMD_2_PI;
		m_flags=0;
	}

	int			m_flags;

	btScalar	m_edgeV0V1Angle;
	btScalar	m_edgeV1V2Angle;
	btScalar	m_edgeV2V0Angle;

};

typedef btHashMap<btHashInt,btTriangleInfo> btInternalTriangleInfoMap;


///The btTriangleInfoMap stores edge angle information for some triangles. You can compute this information yourself or using btGenerateInternalEdgeInfo.
struct	btTriangleInfoMap : public btInternalTriangleInfoMap
{
	btScalar	m_convexEpsilon;///used to determine if an edge or contact normal is convex, using the dot product
	btScalar	m_planarEpsilon; ///used to determine if a triangle edge is planar with zero angle
	btScalar	m_equalVertexThreshold; ///used to compute connectivity: if the distance between two vertices is smaller than m_equalVertexThreshold, they are considered to be 'shared'
	btScalar	m_edgeDistanceThreshold; ///used to determine edge contacts: if the closest distance between a contact point and an edge is smaller than this distance threshold it is considered to "hit the edge"
	btScalar	m_maxEdgeAngleThreshold; //ignore edges that connect triangles at an angle larger than this m_maxEdgeAngleThreshold
	btScalar	m_zeroAreaThreshold; ///used to determine if a triangle is degenerate (length squared of cross product of 2 triangle edges < threshold)
	
	
	btTriangleInfoMap()
	{
		m_convexEpsilon = 0.00f;
		m_planarEpsilon = 0.0001f;
		m_equalVertexThreshold = btScalar(0.0001)*btScalar(0.0001);
		m_edgeDistanceThreshold = btScalar(0.1);
		m_zeroAreaThreshold = btScalar(0.0001)*btScalar(0.0001);
		m_maxEdgeAngleThreshold = SIMD_2_PI;
	}
	virtual ~btTriangleInfoMap() {}

	virtual	int	calculateSerializeBufferSize() const;

	///fills the dataBuffer and returns the struct name (and 0 on failure)
	virtual	const char*	serialize(void* dataBuffer, btSerializer* serializer) const;

	void	deSerialize(struct btTriangleInfoMapData& data);

};

///those fields have to be float and not btScalar for the serialization to work properly
struct	btTriangleInfoData
{
	int			m_flags;
	float	m_edgeV0V1Angle;
	float	m_edgeV1V2Angle;
	float	m_edgeV2V0Angle;
};

struct	btTriangleInfoMapData
{
	int					*m_hashTablePtr;
	int					*m_nextPtr;
	btTriangleInfoData	*m_valueArrayPtr;
	int					*m_keyArrayPtr;

	float	m_convexEpsilon;
	float	m_planarEpsilon;
	float	m_equalVertexThreshold; 
	float	m_edgeDistanceThreshold;
	float	m_zeroAreaThreshold;

	int		m_nextSize;
	int		m_hashTableSize;
	int		m_numValues;
	int		m_numKeys;
	char	m_padding[4];
};

SIMD_FORCE_INLINE	int	btTriangleInfoMap::calculateSerializeBufferSize() const
{
	return sizeof(btTriangleInfoMapData);
}

///fills the dataBuffer and returns the struct name (and 0 on failure)
SIMD_FORCE_INLINE	const char*	btTriangleInfoMap::serialize(void* dataBuffer, btSerializer* serializer) const
{
	btTriangleInfoMapData* tmapData = (btTriangleInfoMapData*) dataBuffer;
	tmapData->m_convexEpsilon = (float)m_convexEpsilon;
	tmapData->m_planarEpsilon = (float)m_planarEpsilon;
	tmapData->m_equalVertexThreshold =(float) m_equalVertexThreshold;
	tmapData->m_edgeDistanceThreshold = (float)m_edgeDistanceThreshold;
	tmapData->m_zeroAreaThreshold = (float)m_zeroAreaThreshold;
	
	tmapData->m_hashTableSize = m_hashTable.size();

	tmapData->m_hashTablePtr = tmapData->m_hashTableSize ? (int*)serializer->getUniquePointer((void*)&m_hashTable[0]) : 0;
	if (tmapData->m_hashTablePtr)
	{ 
		//serialize an int buffer
		int sz = sizeof(int);
		int numElem = tmapData->m_hashTableSize;
		btChunk* chunk = serializer->allocate(sz,numElem);
		int* memPtr = (int*)chunk->m_oldPtr;
		for (int i=0;i<numElem;i++,memPtr++)
		{
			*memPtr = m_hashTable[i];
		}
		serializer->finalizeChunk(chunk,"int",BT_ARRAY_CODE,(void*)&m_hashTable[0]);

	}

	tmapData->m_nextSize = m_next.size();
	tmapData->m_nextPtr = tmapData->m_nextSize? (int*)serializer->getUniquePointer((void*)&m_next[0]): 0;
	if (tmapData->m_nextPtr)
	{
		int sz = sizeof(int);
		int numElem = tmapData->m_nextSize;
		btChunk* chunk = serializer->allocate(sz,numElem);
		int* memPtr = (int*)chunk->m_oldPtr;
		for (int i=0;i<numElem;i++,memPtr++)
		{
			*memPtr = m_next[i];
		}
		serializer->finalizeChunk(chunk,"int",BT_ARRAY_CODE,(void*)&m_next[0]);
	}
	
	tmapData->m_numValues = m_valueArray.size();
	tmapData->m_valueArrayPtr = tmapData->m_numValues ? (btTriangleInfoData*)serializer->getUniquePointer((void*)&m_valueArray[0]): 0;
	if (tmapData->m_valueArrayPtr)
	{
		int sz = sizeof(btTriangleInfoData);
		int numElem = tmapData->m_numValues;
		btChunk* chunk = serializer->allocate(sz,numElem);
		btTriangleInfoData* memPtr = (btTriangleInfoData*)chunk->m_oldPtr;
		for (int i=0;i<numElem;i++,memPtr++)
		{
			memPtr->m_edgeV0V1Angle = (float)m_valueArray[i].m_edgeV0V1Angle;
			memPtr->m_edgeV1V2Angle = (float)m_valueArray[i].m_edgeV1V2Angle;
			memPtr->m_edgeV2V0Angle = (float)m_valueArray[i].m_edgeV2V0Angle;
			memPtr->m_flags = m_valueArray[i].m_flags;
		}
		serializer->finalizeChunk(chunk,"btTriangleInfoData",BT_ARRAY_CODE,(void*) &m_valueArray[0]);
	}
	
	tmapData->m_numKeys = m_keyArray.size();
	tmapData->m_keyArrayPtr = tmapData->m_numKeys ? (int*)serializer->getUniquePointer((void*)&m_keyArray[0]) : 0;
	if (tmapData->m_keyArrayPtr)
	{
		int sz = sizeof(int);
		int numElem = tmapData->m_numValues;
		btChunk* chunk = serializer->allocate(sz,numElem);
		int* memPtr = (int*)chunk->m_oldPtr;
		for (int i=0;i<numElem;i++,memPtr++)
		{
			*memPtr = m_keyArray[i].getUid1();
		}
		serializer->finalizeChunk(chunk,"int",BT_ARRAY_CODE,(void*) &m_keyArray[0]);

	}

	// Fill padding with zeros to appease msan.
	tmapData->m_padding[0] = 0;
	tmapData->m_padding[1] = 0;
	tmapData->m_padding[2] = 0;
	tmapData->m_padding[3] = 0;

	return "btTriangleInfoMapData";
}



///fills the dataBuffer and returns the struct name (and 0 on failure)
SIMD_FORCE_INLINE	void	btTriangleInfoMap::deSerialize(btTriangleInfoMapData& tmapData )
{


	m_convexEpsilon = tmapData.m_convexEpsilon;
	m_planarEpsilon = tmapData.m_planarEpsilon;
	m_equalVertexThreshold = tmapData.m_equalVertexThreshold;
	m_edgeDistanceThreshold = tmapData.m_edgeDistanceThreshold;
	m_zeroAreaThreshold = tmapData.m_zeroAreaThreshold;
	m_hashTable.resize(tmapData.m_hashTableSize);
	int i =0;
	for (i=0;i<tmapData.m_hashTableSize;i++)
	{
		m_hashTable[i] = tmapData.m_hashTablePtr[i];
	}
	m_next.resize(tmapData.m_nextSize);
	for (i=0;i<tmapData.m_nextSize;i++)
	{
		m_next[i] = tmapData.m_nextPtr[i];
	}
	m_valueArray.resize(tmapData.m_numValues);
	for (i=0;i<tmapData.m_numValues;i++)
	{
		m_valueArray[i].m_edgeV0V1Angle = tmapData.m_valueArrayPtr[i].m_edgeV0V1Angle;
		m_valueArray[i].m_edgeV1V2Angle = tmapData.m_valueArrayPtr[i].m_edgeV1V2Angle;
		m_valueArray[i].m_edgeV2V0Angle = tmapData.m_valueArrayPtr[i].m_edgeV2V0Angle;
		m_valueArray[i].m_flags = tmapData.m_valueArrayPtr[i].m_flags;
	}
	
	m_keyArray.resize(tmapData.m_numKeys,btHashInt(0));
	for (i=0;i<tmapData.m_numKeys;i++)
	{
		m_keyArray[i].setUid1(tmapData.m_keyArrayPtr[i]);
	}
}


#endif //_BT_TRIANGLE_INFO_MAP_H