summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletCollision/CollisionShapes/btHeightfieldTerrainShape.cpp
blob: c85ce2498e983761269cf877893ec5e1ad335ca9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2009 Erwin Coumans  http://bulletphysics.org

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#include "btHeightfieldTerrainShape.h"

#include "LinearMath/btTransformUtil.h"

btHeightfieldTerrainShape::btHeightfieldTerrainShape(
	int heightStickWidth, int heightStickLength, const void* heightfieldData,
	btScalar heightScale, btScalar minHeight, btScalar maxHeight, int upAxis,
	PHY_ScalarType hdt, bool flipQuadEdges)
{
	initialize(heightStickWidth, heightStickLength, heightfieldData,
			   heightScale, minHeight, maxHeight, upAxis, hdt,
			   flipQuadEdges);
}

btHeightfieldTerrainShape::btHeightfieldTerrainShape(int heightStickWidth, int heightStickLength, const void* heightfieldData, btScalar maxHeight, int upAxis, bool useFloatData, bool flipQuadEdges)
{
	// legacy constructor: support only float or unsigned char,
	// 	and min height is zero
	PHY_ScalarType hdt = (useFloatData) ? PHY_FLOAT : PHY_UCHAR;
	btScalar minHeight = 0.0f;

	// previously, height = uchar * maxHeight / 65535.
	// So to preserve legacy behavior, heightScale = maxHeight / 65535
	btScalar heightScale = maxHeight / 65535;

	initialize(heightStickWidth, heightStickLength, heightfieldData,
			   heightScale, minHeight, maxHeight, upAxis, hdt,
			   flipQuadEdges);
}

void btHeightfieldTerrainShape::initialize(
	int heightStickWidth, int heightStickLength, const void* heightfieldData,
	btScalar heightScale, btScalar minHeight, btScalar maxHeight, int upAxis,
	PHY_ScalarType hdt, bool flipQuadEdges)
{
	// validation
	btAssert(heightStickWidth > 1);   // && "bad width");
	btAssert(heightStickLength > 1);  // && "bad length");
	btAssert(heightfieldData);        // && "null heightfield data");
	// btAssert(heightScale) -- do we care?  Trust caller here
	btAssert(minHeight <= maxHeight);                                    // && "bad min/max height");
	btAssert(upAxis >= 0 && upAxis < 3);                                 // && "bad upAxis--should be in range [0,2]");
	btAssert(hdt != PHY_UCHAR || hdt != PHY_FLOAT || hdt != PHY_SHORT);  // && "Bad height data type enum");

	// initialize member variables
	m_shapeType = TERRAIN_SHAPE_PROXYTYPE;
	m_heightStickWidth = heightStickWidth;
	m_heightStickLength = heightStickLength;
	m_minHeight = minHeight;
	m_maxHeight = maxHeight;
	m_width = (btScalar)(heightStickWidth - 1);
	m_length = (btScalar)(heightStickLength - 1);
	m_heightScale = heightScale;
	m_heightfieldDataUnknown = heightfieldData;
	m_heightDataType = hdt;
	m_flipQuadEdges = flipQuadEdges;
	m_useDiamondSubdivision = false;
	m_useZigzagSubdivision = false;
	m_upAxis = upAxis;
	m_localScaling.setValue(btScalar(1.), btScalar(1.), btScalar(1.));

	// determine min/max axis-aligned bounding box (aabb) values
	switch (m_upAxis)
	{
		case 0:
		{
			m_localAabbMin.setValue(m_minHeight, 0, 0);
			m_localAabbMax.setValue(m_maxHeight, m_width, m_length);
			break;
		}
		case 1:
		{
			m_localAabbMin.setValue(0, m_minHeight, 0);
			m_localAabbMax.setValue(m_width, m_maxHeight, m_length);
			break;
		};
		case 2:
		{
			m_localAabbMin.setValue(0, 0, m_minHeight);
			m_localAabbMax.setValue(m_width, m_length, m_maxHeight);
			break;
		}
		default:
		{
			//need to get valid m_upAxis
			btAssert(0);  // && "Bad m_upAxis");
		}
	}

	// remember origin (defined as exact middle of aabb)
	m_localOrigin = btScalar(0.5) * (m_localAabbMin + m_localAabbMax);
}

btHeightfieldTerrainShape::~btHeightfieldTerrainShape()
{
}

void btHeightfieldTerrainShape::getAabb(const btTransform& t, btVector3& aabbMin, btVector3& aabbMax) const
{
	btVector3 halfExtents = (m_localAabbMax - m_localAabbMin) * m_localScaling * btScalar(0.5);

	btVector3 localOrigin(0, 0, 0);
	localOrigin[m_upAxis] = (m_minHeight + m_maxHeight) * btScalar(0.5);
	localOrigin *= m_localScaling;

	btMatrix3x3 abs_b = t.getBasis().absolute();
	btVector3 center = t.getOrigin();
	btVector3 extent = halfExtents.dot3(abs_b[0], abs_b[1], abs_b[2]);
	extent += btVector3(getMargin(), getMargin(), getMargin());

	aabbMin = center - extent;
	aabbMax = center + extent;
}

/// This returns the "raw" (user's initial) height, not the actual height.
/// The actual height needs to be adjusted to be relative to the center
///   of the heightfield's AABB.
btScalar
btHeightfieldTerrainShape::getRawHeightFieldValue(int x, int y) const
{
	btScalar val = 0.f;
	switch (m_heightDataType)
	{
		case PHY_FLOAT:
		{
			val = m_heightfieldDataFloat[(y * m_heightStickWidth) + x];
			break;
		}

		case PHY_UCHAR:
		{
			unsigned char heightFieldValue = m_heightfieldDataUnsignedChar[(y * m_heightStickWidth) + x];
			val = heightFieldValue * m_heightScale;
			break;
		}

		case PHY_SHORT:
		{
			short hfValue = m_heightfieldDataShort[(y * m_heightStickWidth) + x];
			val = hfValue * m_heightScale;
			break;
		}

		default:
		{
			btAssert(!"Bad m_heightDataType");
		}
	}

	return val;
}

/// this returns the vertex in bullet-local coordinates
void btHeightfieldTerrainShape::getVertex(int x, int y, btVector3& vertex) const
{
	btAssert(x >= 0);
	btAssert(y >= 0);
	btAssert(x < m_heightStickWidth);
	btAssert(y < m_heightStickLength);

	btScalar height = getRawHeightFieldValue(x, y);

	switch (m_upAxis)
	{
		case 0:
		{
			vertex.setValue(
				height - m_localOrigin.getX(),
				(-m_width / btScalar(2.0)) + x,
				(-m_length / btScalar(2.0)) + y);
			break;
		}
		case 1:
		{
			vertex.setValue(
				(-m_width / btScalar(2.0)) + x,
				height - m_localOrigin.getY(),
				(-m_length / btScalar(2.0)) + y);
			break;
		};
		case 2:
		{
			vertex.setValue(
				(-m_width / btScalar(2.0)) + x,
				(-m_length / btScalar(2.0)) + y,
				height - m_localOrigin.getZ());
			break;
		}
		default:
		{
			//need to get valid m_upAxis
			btAssert(0);
		}
	}

	vertex *= m_localScaling;
}

static inline int
getQuantized(
	btScalar x)
{
	if (x < 0.0)
	{
		return (int)(x - 0.5);
	}
	return (int)(x + 0.5);
}

/// given input vector, return quantized version
/**
  This routine is basically determining the gridpoint indices for a given
  input vector, answering the question: "which gridpoint is closest to the
  provided point?".

  "with clamp" means that we restrict the point to be in the heightfield's
  axis-aligned bounding box.
 */
void btHeightfieldTerrainShape::quantizeWithClamp(int* out, const btVector3& point, int /*isMax*/) const
{
	btVector3 clampedPoint(point);
	clampedPoint.setMax(m_localAabbMin);
	clampedPoint.setMin(m_localAabbMax);

	out[0] = getQuantized(clampedPoint.getX());
	out[1] = getQuantized(clampedPoint.getY());
	out[2] = getQuantized(clampedPoint.getZ());
}

/// process all triangles within the provided axis-aligned bounding box
/**
  basic algorithm:
    - convert input aabb to local coordinates (scale down and shift for local origin)
    - convert input aabb to a range of heightfield grid points (quantize)
    - iterate over all triangles in that subset of the grid
 */
void btHeightfieldTerrainShape::processAllTriangles(btTriangleCallback* callback, const btVector3& aabbMin, const btVector3& aabbMax) const
{
	// scale down the input aabb's so they are in local (non-scaled) coordinates
	btVector3 localAabbMin = aabbMin * btVector3(1.f / m_localScaling[0], 1.f / m_localScaling[1], 1.f / m_localScaling[2]);
	btVector3 localAabbMax = aabbMax * btVector3(1.f / m_localScaling[0], 1.f / m_localScaling[1], 1.f / m_localScaling[2]);

	// account for local origin
	localAabbMin += m_localOrigin;
	localAabbMax += m_localOrigin;

	//quantize the aabbMin and aabbMax, and adjust the start/end ranges
	int quantizedAabbMin[3];
	int quantizedAabbMax[3];
	quantizeWithClamp(quantizedAabbMin, localAabbMin, 0);
	quantizeWithClamp(quantizedAabbMax, localAabbMax, 1);

	// expand the min/max quantized values
	// this is to catch the case where the input aabb falls between grid points!
	for (int i = 0; i < 3; ++i)
	{
		quantizedAabbMin[i]--;
		quantizedAabbMax[i]++;
	}

	int startX = 0;
	int endX = m_heightStickWidth - 1;
	int startJ = 0;
	int endJ = m_heightStickLength - 1;

	switch (m_upAxis)
	{
		case 0:
		{
			if (quantizedAabbMin[1] > startX)
				startX = quantizedAabbMin[1];
			if (quantizedAabbMax[1] < endX)
				endX = quantizedAabbMax[1];
			if (quantizedAabbMin[2] > startJ)
				startJ = quantizedAabbMin[2];
			if (quantizedAabbMax[2] < endJ)
				endJ = quantizedAabbMax[2];
			break;
		}
		case 1:
		{
			if (quantizedAabbMin[0] > startX)
				startX = quantizedAabbMin[0];
			if (quantizedAabbMax[0] < endX)
				endX = quantizedAabbMax[0];
			if (quantizedAabbMin[2] > startJ)
				startJ = quantizedAabbMin[2];
			if (quantizedAabbMax[2] < endJ)
				endJ = quantizedAabbMax[2];
			break;
		};
		case 2:
		{
			if (quantizedAabbMin[0] > startX)
				startX = quantizedAabbMin[0];
			if (quantizedAabbMax[0] < endX)
				endX = quantizedAabbMax[0];
			if (quantizedAabbMin[1] > startJ)
				startJ = quantizedAabbMin[1];
			if (quantizedAabbMax[1] < endJ)
				endJ = quantizedAabbMax[1];
			break;
		}
		default:
		{
			//need to get valid m_upAxis
			btAssert(0);
		}
	}

	for (int j = startJ; j < endJ; j++)
	{
		for (int x = startX; x < endX; x++)
		{
			btVector3 vertices[3];
			if (m_flipQuadEdges || (m_useDiamondSubdivision && !((j + x) & 1)) || (m_useZigzagSubdivision && !(j & 1)))
			{
				//first triangle
				getVertex(x, j, vertices[0]);
				getVertex(x, j + 1, vertices[1]);
				getVertex(x + 1, j + 1, vertices[2]);
				callback->processTriangle(vertices, x, j);
				//second triangle
				//  getVertex(x,j,vertices[0]);//already got this vertex before, thanks to Danny Chapman
				getVertex(x + 1, j + 1, vertices[1]);
				getVertex(x + 1, j, vertices[2]);
				callback->processTriangle(vertices, x, j);
			}
			else
			{
				//first triangle
				getVertex(x, j, vertices[0]);
				getVertex(x, j + 1, vertices[1]);
				getVertex(x + 1, j, vertices[2]);
				callback->processTriangle(vertices, x, j);
				//second triangle
				getVertex(x + 1, j, vertices[0]);
				//getVertex(x,j+1,vertices[1]);
				getVertex(x + 1, j + 1, vertices[2]);
				callback->processTriangle(vertices, x, j);
			}
		}
	}
}

void btHeightfieldTerrainShape::calculateLocalInertia(btScalar, btVector3& inertia) const
{
	//moving concave objects not supported

	inertia.setValue(btScalar(0.), btScalar(0.), btScalar(0.));
}

void btHeightfieldTerrainShape::setLocalScaling(const btVector3& scaling)
{
	m_localScaling = scaling;
}
const btVector3& btHeightfieldTerrainShape::getLocalScaling() const
{
	return m_localScaling;
}