summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletCollision/CollisionShapes/btConvexPolyhedron.cpp
blob: 65b669e1c05652315cb85367d74af7e0851a2bce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2011 Advanced Micro Devices, Inc.  http://bulletphysics.org

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

///This file was written by Erwin Coumans
///Separating axis rest based on work from Pierre Terdiman, see
///And contact clipping based on work from Simon Hobbs

#include "btConvexPolyhedron.h"
#include "LinearMath/btHashMap.h"

btConvexPolyhedron::btConvexPolyhedron()
{
}
btConvexPolyhedron::~btConvexPolyhedron()
{
}

inline bool IsAlmostZero(const btVector3& v)
{
	if (btFabs(v.x()) > 1e-6 || btFabs(v.y()) > 1e-6 || btFabs(v.z()) > 1e-6) return false;
	return true;
}

struct btInternalVertexPair
{
	btInternalVertexPair(short int v0, short int v1)
		: m_v0(v0),
		  m_v1(v1)
	{
		if (m_v1 > m_v0)
			btSwap(m_v0, m_v1);
	}
	short int m_v0;
	short int m_v1;
	int getHash() const
	{
		return m_v0 + (m_v1 << 16);
	}
	bool equals(const btInternalVertexPair& other) const
	{
		return m_v0 == other.m_v0 && m_v1 == other.m_v1;
	}
};

struct btInternalEdge
{
	btInternalEdge()
		: m_face0(-1),
		  m_face1(-1)
	{
	}
	short int m_face0;
	short int m_face1;
};

//

#ifdef TEST_INTERNAL_OBJECTS
bool btConvexPolyhedron::testContainment() const
{
	for (int p = 0; p < 8; p++)
	{
		btVector3 LocalPt;
		if (p == 0)
			LocalPt = m_localCenter + btVector3(m_extents[0], m_extents[1], m_extents[2]);
		else if (p == 1)
			LocalPt = m_localCenter + btVector3(m_extents[0], m_extents[1], -m_extents[2]);
		else if (p == 2)
			LocalPt = m_localCenter + btVector3(m_extents[0], -m_extents[1], m_extents[2]);
		else if (p == 3)
			LocalPt = m_localCenter + btVector3(m_extents[0], -m_extents[1], -m_extents[2]);
		else if (p == 4)
			LocalPt = m_localCenter + btVector3(-m_extents[0], m_extents[1], m_extents[2]);
		else if (p == 5)
			LocalPt = m_localCenter + btVector3(-m_extents[0], m_extents[1], -m_extents[2]);
		else if (p == 6)
			LocalPt = m_localCenter + btVector3(-m_extents[0], -m_extents[1], m_extents[2]);
		else if (p == 7)
			LocalPt = m_localCenter + btVector3(-m_extents[0], -m_extents[1], -m_extents[2]);

		for (int i = 0; i < m_faces.size(); i++)
		{
			const btVector3 Normal(m_faces[i].m_plane[0], m_faces[i].m_plane[1], m_faces[i].m_plane[2]);
			const btScalar d = LocalPt.dot(Normal) + m_faces[i].m_plane[3];
			if (d > 0.0f)
				return false;
		}
	}
	return true;
}
#endif

void btConvexPolyhedron::initialize()
{
	btHashMap<btInternalVertexPair, btInternalEdge> edges;

	for (int i = 0; i < m_faces.size(); i++)
	{
		int numVertices = m_faces[i].m_indices.size();
		int NbTris = numVertices;
		for (int j = 0; j < NbTris; j++)
		{
			int k = (j + 1) % numVertices;
			btInternalVertexPair vp(m_faces[i].m_indices[j], m_faces[i].m_indices[k]);
			btInternalEdge* edptr = edges.find(vp);
			btVector3 edge = m_vertices[vp.m_v1] - m_vertices[vp.m_v0];
			edge.normalize();

			bool found = false;

			for (int p = 0; p < m_uniqueEdges.size(); p++)
			{
				if (IsAlmostZero(m_uniqueEdges[p] - edge) ||
					IsAlmostZero(m_uniqueEdges[p] + edge))
				{
					found = true;
					break;
				}
			}

			if (!found)
			{
				m_uniqueEdges.push_back(edge);
			}

			if (edptr)
			{
				btAssert(edptr->m_face0 >= 0);
				btAssert(edptr->m_face1 < 0);
				edptr->m_face1 = i;
			}
			else
			{
				btInternalEdge ed;
				ed.m_face0 = i;
				edges.insert(vp, ed);
			}
		}
	}

#ifdef USE_CONNECTED_FACES
	for (int i = 0; i < m_faces.size(); i++)
	{
		int numVertices = m_faces[i].m_indices.size();
		m_faces[i].m_connectedFaces.resize(numVertices);

		for (int j = 0; j < numVertices; j++)
		{
			int k = (j + 1) % numVertices;
			btInternalVertexPair vp(m_faces[i].m_indices[j], m_faces[i].m_indices[k]);
			btInternalEdge* edptr = edges.find(vp);
			btAssert(edptr);
			btAssert(edptr->m_face0 >= 0);
			btAssert(edptr->m_face1 >= 0);

			int connectedFace = (edptr->m_face0 == i) ? edptr->m_face1 : edptr->m_face0;
			m_faces[i].m_connectedFaces[j] = connectedFace;
		}
	}
#endif  //USE_CONNECTED_FACES

	initialize2();
}

void btConvexPolyhedron::initialize2()
{
	m_localCenter.setValue(0, 0, 0);
	btScalar TotalArea = 0.0f;
	for (int i = 0; i < m_faces.size(); i++)
	{
		int numVertices = m_faces[i].m_indices.size();
		int NbTris = numVertices - 2;

		const btVector3& p0 = m_vertices[m_faces[i].m_indices[0]];
		for (int j = 1; j <= NbTris; j++)
		{
			int k = (j + 1) % numVertices;
			const btVector3& p1 = m_vertices[m_faces[i].m_indices[j]];
			const btVector3& p2 = m_vertices[m_faces[i].m_indices[k]];
			btScalar Area = ((p0 - p1).cross(p0 - p2)).length() * 0.5f;
			btVector3 Center = (p0 + p1 + p2) / 3.0f;
			m_localCenter += Area * Center;
			TotalArea += Area;
		}
	}
	m_localCenter /= TotalArea;

#ifdef TEST_INTERNAL_OBJECTS
	if (1)
	{
		m_radius = FLT_MAX;
		for (int i = 0; i < m_faces.size(); i++)
		{
			const btVector3 Normal(m_faces[i].m_plane[0], m_faces[i].m_plane[1], m_faces[i].m_plane[2]);
			const btScalar dist = btFabs(m_localCenter.dot(Normal) + m_faces[i].m_plane[3]);
			if (dist < m_radius)
				m_radius = dist;
		}

		btScalar MinX = FLT_MAX;
		btScalar MinY = FLT_MAX;
		btScalar MinZ = FLT_MAX;
		btScalar MaxX = -FLT_MAX;
		btScalar MaxY = -FLT_MAX;
		btScalar MaxZ = -FLT_MAX;
		for (int i = 0; i < m_vertices.size(); i++)
		{
			const btVector3& pt = m_vertices[i];
			if (pt.x() < MinX) MinX = pt.x();
			if (pt.x() > MaxX) MaxX = pt.x();
			if (pt.y() < MinY) MinY = pt.y();
			if (pt.y() > MaxY) MaxY = pt.y();
			if (pt.z() < MinZ) MinZ = pt.z();
			if (pt.z() > MaxZ) MaxZ = pt.z();
		}
		mC.setValue(MaxX + MinX, MaxY + MinY, MaxZ + MinZ);
		mE.setValue(MaxX - MinX, MaxY - MinY, MaxZ - MinZ);

		//		const btScalar r = m_radius / sqrtf(2.0f);
		const btScalar r = m_radius / sqrtf(3.0f);
		const int LargestExtent = mE.maxAxis();
		const btScalar Step = (mE[LargestExtent] * 0.5f - r) / 1024.0f;
		m_extents[0] = m_extents[1] = m_extents[2] = r;
		m_extents[LargestExtent] = mE[LargestExtent] * 0.5f;
		bool FoundBox = false;
		for (int j = 0; j < 1024; j++)
		{
			if (testContainment())
			{
				FoundBox = true;
				break;
			}

			m_extents[LargestExtent] -= Step;
		}
		if (!FoundBox)
		{
			m_extents[0] = m_extents[1] = m_extents[2] = r;
		}
		else
		{
			// Refine the box
			const btScalar Step = (m_radius - r) / 1024.0f;
			const int e0 = (1 << LargestExtent) & 3;
			const int e1 = (1 << e0) & 3;

			for (int j = 0; j < 1024; j++)
			{
				const btScalar Saved0 = m_extents[e0];
				const btScalar Saved1 = m_extents[e1];
				m_extents[e0] += Step;
				m_extents[e1] += Step;

				if (!testContainment())
				{
					m_extents[e0] = Saved0;
					m_extents[e1] = Saved1;
					break;
				}
			}
		}
	}
#endif
}
void btConvexPolyhedron::project(const btTransform& trans, const btVector3& dir, btScalar& minProj, btScalar& maxProj, btVector3& witnesPtMin, btVector3& witnesPtMax) const
{
	minProj = FLT_MAX;
	maxProj = -FLT_MAX;
	int numVerts = m_vertices.size();
	for (int i = 0; i < numVerts; i++)
	{
		btVector3 pt = trans * m_vertices[i];
		btScalar dp = pt.dot(dir);
		if (dp < minProj)
		{
			minProj = dp;
			witnesPtMin = pt;
		}
		if (dp > maxProj)
		{
			maxProj = dp;
			witnesPtMax = pt;
		}
	}
	if (minProj > maxProj)
	{
		btSwap(minProj, maxProj);
		btSwap(witnesPtMin, witnesPtMax);
	}
}