summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletCollision/CollisionShapes/btConeShape.cpp
blob: 64a6f272ca5fe762d67c97c9478048c7ff02d278 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2009 Erwin Coumans  http://bulletphysics.org

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#include "btConeShape.h"

btConeShape::btConeShape(btScalar radius, btScalar height) : btConvexInternalShape(),
															 m_radius(radius),
															 m_height(height)
{
	m_shapeType = CONE_SHAPE_PROXYTYPE;
	setConeUpIndex(1);
	btVector3 halfExtents;
	m_sinAngle = (m_radius / btSqrt(m_radius * m_radius + m_height * m_height));
}

btConeShapeZ::btConeShapeZ(btScalar radius, btScalar height) : btConeShape(radius, height)
{
	setConeUpIndex(2);
}

btConeShapeX::btConeShapeX(btScalar radius, btScalar height) : btConeShape(radius, height)
{
	setConeUpIndex(0);
}

///choose upAxis index
void btConeShape::setConeUpIndex(int upIndex)
{
	switch (upIndex)
	{
		case 0:
			m_coneIndices[0] = 1;
			m_coneIndices[1] = 0;
			m_coneIndices[2] = 2;
			break;
		case 1:
			m_coneIndices[0] = 0;
			m_coneIndices[1] = 1;
			m_coneIndices[2] = 2;
			break;
		case 2:
			m_coneIndices[0] = 0;
			m_coneIndices[1] = 2;
			m_coneIndices[2] = 1;
			break;
		default:
			btAssert(0);
	};

	m_implicitShapeDimensions[m_coneIndices[0]] = m_radius;
	m_implicitShapeDimensions[m_coneIndices[1]] = m_height;
	m_implicitShapeDimensions[m_coneIndices[2]] = m_radius;
}

btVector3 btConeShape::coneLocalSupport(const btVector3& v) const
{
	btScalar halfHeight = m_height * btScalar(0.5);

	if (v[m_coneIndices[1]] > v.length() * m_sinAngle)
	{
		btVector3 tmp;

		tmp[m_coneIndices[0]] = btScalar(0.);
		tmp[m_coneIndices[1]] = halfHeight;
		tmp[m_coneIndices[2]] = btScalar(0.);
		return tmp;
	}
	else
	{
		btScalar s = btSqrt(v[m_coneIndices[0]] * v[m_coneIndices[0]] + v[m_coneIndices[2]] * v[m_coneIndices[2]]);
		if (s > SIMD_EPSILON)
		{
			btScalar d = m_radius / s;
			btVector3 tmp;
			tmp[m_coneIndices[0]] = v[m_coneIndices[0]] * d;
			tmp[m_coneIndices[1]] = -halfHeight;
			tmp[m_coneIndices[2]] = v[m_coneIndices[2]] * d;
			return tmp;
		}
		else
		{
			btVector3 tmp;
			tmp[m_coneIndices[0]] = btScalar(0.);
			tmp[m_coneIndices[1]] = -halfHeight;
			tmp[m_coneIndices[2]] = btScalar(0.);
			return tmp;
		}
	}
}

btVector3 btConeShape::localGetSupportingVertexWithoutMargin(const btVector3& vec) const
{
	return coneLocalSupport(vec);
}

void btConeShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors, btVector3* supportVerticesOut, int numVectors) const
{
	for (int i = 0; i < numVectors; i++)
	{
		const btVector3& vec = vectors[i];
		supportVerticesOut[i] = coneLocalSupport(vec);
	}
}

btVector3 btConeShape::localGetSupportingVertex(const btVector3& vec) const
{
	btVector3 supVertex = coneLocalSupport(vec);
	if (getMargin() != btScalar(0.))
	{
		btVector3 vecnorm = vec;
		if (vecnorm.length2() < (SIMD_EPSILON * SIMD_EPSILON))
		{
			vecnorm.setValue(btScalar(-1.), btScalar(-1.), btScalar(-1.));
		}
		vecnorm.normalize();
		supVertex += getMargin() * vecnorm;
	}
	return supVertex;
}

void btConeShape::setLocalScaling(const btVector3& scaling)
{
	int axis = m_coneIndices[1];
	int r1 = m_coneIndices[0];
	int r2 = m_coneIndices[2];
	m_height *= scaling[axis] / m_localScaling[axis];
	m_radius *= (scaling[r1] / m_localScaling[r1] + scaling[r2] / m_localScaling[r2]) / 2;
	m_sinAngle = (m_radius / btSqrt(m_radius * m_radius + m_height * m_height));
	btConvexInternalShape::setLocalScaling(scaling);
}