summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletCollision/CollisionShapes/btCompoundShape.cpp
blob: e8c8c336cd2cc04a4f826538f60a3f020ed2d5f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2009 Erwin Coumans  http://bulletphysics.org

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#include "btCompoundShape.h"
#include "btCollisionShape.h"
#include "BulletCollision/BroadphaseCollision/btDbvt.h"
#include "LinearMath/btSerializer.h"

btCompoundShape::btCompoundShape(bool enableDynamicAabbTree, const int initialChildCapacity)
: m_localAabbMin(btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT)),
m_localAabbMax(btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT)),
m_dynamicAabbTree(0),
m_updateRevision(1),
m_collisionMargin(btScalar(0.)),
m_localScaling(btScalar(1.),btScalar(1.),btScalar(1.))
{
	m_shapeType = COMPOUND_SHAPE_PROXYTYPE;

	if (enableDynamicAabbTree)
	{
		void* mem = btAlignedAlloc(sizeof(btDbvt),16);
		m_dynamicAabbTree = new(mem) btDbvt();
		btAssert(mem==m_dynamicAabbTree);
	}

	m_children.reserve(initialChildCapacity);
}


btCompoundShape::~btCompoundShape()
{
	if (m_dynamicAabbTree)
	{
		m_dynamicAabbTree->~btDbvt();
		btAlignedFree(m_dynamicAabbTree);
	}
}

void	btCompoundShape::addChildShape(const btTransform& localTransform,btCollisionShape* shape)
{
	m_updateRevision++;
	//m_childTransforms.push_back(localTransform);
	//m_childShapes.push_back(shape);
	btCompoundShapeChild child;
	child.m_node = 0;
	child.m_transform = localTransform;
	child.m_childShape = shape;
	child.m_childShapeType = shape->getShapeType();
	child.m_childMargin = shape->getMargin();

	
	//extend the local aabbMin/aabbMax
	btVector3 localAabbMin,localAabbMax;
	shape->getAabb(localTransform,localAabbMin,localAabbMax);
	for (int i=0;i<3;i++)
	{
		if (m_localAabbMin[i] > localAabbMin[i])
		{
			m_localAabbMin[i] = localAabbMin[i];
		}
		if (m_localAabbMax[i] < localAabbMax[i])
		{
			m_localAabbMax[i] = localAabbMax[i];
		}

	}
	if (m_dynamicAabbTree)
	{
		const btDbvtVolume	bounds=btDbvtVolume::FromMM(localAabbMin,localAabbMax);
		size_t index = m_children.size();
		child.m_node = m_dynamicAabbTree->insert(bounds,reinterpret_cast<void*>(index) );
	}

	m_children.push_back(child);

}

void	btCompoundShape::updateChildTransform(int childIndex, const btTransform& newChildTransform,bool shouldRecalculateLocalAabb)
{
	m_children[childIndex].m_transform = newChildTransform;

	if (m_dynamicAabbTree)
	{
		///update the dynamic aabb tree
		btVector3 localAabbMin,localAabbMax;
		m_children[childIndex].m_childShape->getAabb(newChildTransform,localAabbMin,localAabbMax);
		ATTRIBUTE_ALIGNED16(btDbvtVolume)	bounds=btDbvtVolume::FromMM(localAabbMin,localAabbMax);
		//int index = m_children.size()-1;
		m_dynamicAabbTree->update(m_children[childIndex].m_node,bounds);
	}

	if (shouldRecalculateLocalAabb)
	{
		recalculateLocalAabb();
	}
}

void btCompoundShape::removeChildShapeByIndex(int childShapeIndex)
{
	m_updateRevision++;
	btAssert(childShapeIndex >=0 && childShapeIndex < m_children.size());
	if (m_dynamicAabbTree)
	{
		m_dynamicAabbTree->remove(m_children[childShapeIndex].m_node);
	}
	m_children.swap(childShapeIndex,m_children.size()-1);
    if (m_dynamicAabbTree) 
		m_children[childShapeIndex].m_node->dataAsInt = childShapeIndex;
	m_children.pop_back();

}



void btCompoundShape::removeChildShape(btCollisionShape* shape)
{
	m_updateRevision++;
	// Find the children containing the shape specified, and remove those children.
	//note: there might be multiple children using the same shape!
	for(int i = m_children.size()-1; i >= 0 ; i--)
	{
		if(m_children[i].m_childShape == shape)
		{
			removeChildShapeByIndex(i);
		}
	}



	recalculateLocalAabb();
}

void btCompoundShape::recalculateLocalAabb()
{
	// Recalculate the local aabb
	// Brute force, it iterates over all the shapes left.

	m_localAabbMin = btVector3(btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT));
	m_localAabbMax = btVector3(btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT));

	//extend the local aabbMin/aabbMax
	for (int j = 0; j < m_children.size(); j++)
	{
		btVector3 localAabbMin,localAabbMax;
		m_children[j].m_childShape->getAabb(m_children[j].m_transform, localAabbMin, localAabbMax);
		for (int i=0;i<3;i++)
		{
			if (m_localAabbMin[i] > localAabbMin[i])
				m_localAabbMin[i] = localAabbMin[i];
			if (m_localAabbMax[i] < localAabbMax[i])
				m_localAabbMax[i] = localAabbMax[i];
		}
	}
}

///getAabb's default implementation is brute force, expected derived classes to implement a fast dedicated version
void btCompoundShape::getAabb(const btTransform& trans,btVector3& aabbMin,btVector3& aabbMax) const
{
	btVector3 localHalfExtents = btScalar(0.5)*(m_localAabbMax-m_localAabbMin);
	btVector3 localCenter = btScalar(0.5)*(m_localAabbMax+m_localAabbMin);
	
	//avoid an illegal AABB when there are no children
	if (!m_children.size())
	{
		localHalfExtents.setValue(0,0,0);
		localCenter.setValue(0,0,0);
	}
	localHalfExtents += btVector3(getMargin(),getMargin(),getMargin());
		

	btMatrix3x3 abs_b = trans.getBasis().absolute();  

	btVector3 center = trans(localCenter);

    btVector3 extent = localHalfExtents.dot3(abs_b[0], abs_b[1], abs_b[2]);
	aabbMin = center-extent;
	aabbMax = center+extent;
	
}

void	btCompoundShape::calculateLocalInertia(btScalar mass,btVector3& inertia) const
{
	//approximation: take the inertia from the aabb for now
	btTransform ident;
	ident.setIdentity();
	btVector3 aabbMin,aabbMax;
	getAabb(ident,aabbMin,aabbMax);

	btVector3 halfExtents = (aabbMax-aabbMin)*btScalar(0.5);

	btScalar lx=btScalar(2.)*(halfExtents.x());
	btScalar ly=btScalar(2.)*(halfExtents.y());
	btScalar lz=btScalar(2.)*(halfExtents.z());

	inertia[0] = mass/(btScalar(12.0)) * (ly*ly + lz*lz);
	inertia[1] = mass/(btScalar(12.0)) * (lx*lx + lz*lz);
	inertia[2] = mass/(btScalar(12.0)) * (lx*lx + ly*ly);

}




void btCompoundShape::calculatePrincipalAxisTransform(btScalar* masses, btTransform& principal, btVector3& inertia) const
{
	int n = m_children.size();

	btScalar totalMass = 0;
	btVector3 center(0, 0, 0);
	int k;

	for (k = 0; k < n; k++)
	{
		btAssert(masses[k]>0);
		center += m_children[k].m_transform.getOrigin() * masses[k];
		totalMass += masses[k];
	}

	btAssert(totalMass>0);

	center /= totalMass;
	principal.setOrigin(center);

	btMatrix3x3 tensor(0, 0, 0, 0, 0, 0, 0, 0, 0);
	for ( k = 0; k < n; k++)
	{
		btVector3 i;
		m_children[k].m_childShape->calculateLocalInertia(masses[k], i);

		const btTransform& t = m_children[k].m_transform;
		btVector3 o = t.getOrigin() - center;

		//compute inertia tensor in coordinate system of compound shape
		btMatrix3x3 j = t.getBasis().transpose();
		j[0] *= i[0];
		j[1] *= i[1];
		j[2] *= i[2];
		j = t.getBasis() * j;

		//add inertia tensor
		tensor[0] += j[0];
		tensor[1] += j[1];
		tensor[2] += j[2];

		//compute inertia tensor of pointmass at o
		btScalar o2 = o.length2();
		j[0].setValue(o2, 0, 0);
		j[1].setValue(0, o2, 0);
		j[2].setValue(0, 0, o2);
		j[0] += o * -o.x(); 
		j[1] += o * -o.y(); 
		j[2] += o * -o.z();

		//add inertia tensor of pointmass
		tensor[0] += masses[k] * j[0];
		tensor[1] += masses[k] * j[1];
		tensor[2] += masses[k] * j[2];
	}

	tensor.diagonalize(principal.getBasis(), btScalar(0.00001), 20);
	inertia.setValue(tensor[0][0], tensor[1][1], tensor[2][2]);
}





void btCompoundShape::setLocalScaling(const btVector3& scaling)
{

	for(int i = 0; i < m_children.size(); i++)
	{
		btTransform childTrans = getChildTransform(i);
		btVector3 childScale = m_children[i].m_childShape->getLocalScaling();
//		childScale = childScale * (childTrans.getBasis() * scaling);
		childScale = childScale * scaling / m_localScaling;
		m_children[i].m_childShape->setLocalScaling(childScale);
		childTrans.setOrigin((childTrans.getOrigin()) * scaling / m_localScaling);
		updateChildTransform(i, childTrans,false);
	}
	
	m_localScaling = scaling;
	recalculateLocalAabb();

}


void btCompoundShape::createAabbTreeFromChildren()
{
    if ( !m_dynamicAabbTree )
    {
        void* mem = btAlignedAlloc(sizeof(btDbvt),16);
        m_dynamicAabbTree = new(mem) btDbvt();
        btAssert(mem==m_dynamicAabbTree);

        for ( int index = 0; index < m_children.size(); index++ )
        {
            btCompoundShapeChild &child = m_children[index];

            //extend the local aabbMin/aabbMax
            btVector3 localAabbMin,localAabbMax;
            child.m_childShape->getAabb(child.m_transform,localAabbMin,localAabbMax);

            const btDbvtVolume  bounds=btDbvtVolume::FromMM(localAabbMin,localAabbMax);
			size_t index2 = index;
            child.m_node = m_dynamicAabbTree->insert(bounds, reinterpret_cast<void*>(index2) );
        }
    }
}


///fills the dataBuffer and returns the struct name (and 0 on failure)
const char*	btCompoundShape::serialize(void* dataBuffer, btSerializer* serializer) const
{

	btCompoundShapeData* shapeData = (btCompoundShapeData*) dataBuffer;
	btCollisionShape::serialize(&shapeData->m_collisionShapeData, serializer);

	shapeData->m_collisionMargin = float(m_collisionMargin);
	shapeData->m_numChildShapes = m_children.size();
	shapeData->m_childShapePtr = 0;
	if (shapeData->m_numChildShapes)
	{
		btChunk* chunk = serializer->allocate(sizeof(btCompoundShapeChildData),shapeData->m_numChildShapes);
		btCompoundShapeChildData* memPtr = (btCompoundShapeChildData*)chunk->m_oldPtr;
		shapeData->m_childShapePtr = (btCompoundShapeChildData*)serializer->getUniquePointer(memPtr);

		for (int i=0;i<shapeData->m_numChildShapes;i++,memPtr++)
		{
			memPtr->m_childMargin = float(m_children[i].m_childMargin);
			memPtr->m_childShape = (btCollisionShapeData*)serializer->getUniquePointer(m_children[i].m_childShape);
			//don't serialize shapes that already have been serialized
			if (!serializer->findPointer(m_children[i].m_childShape))
			{
				btChunk* chunk = serializer->allocate(m_children[i].m_childShape->calculateSerializeBufferSize(),1);
				const char* structType = m_children[i].m_childShape->serialize(chunk->m_oldPtr,serializer);
				serializer->finalizeChunk(chunk,structType,BT_SHAPE_CODE,m_children[i].m_childShape);
			} 

			memPtr->m_childShapeType = m_children[i].m_childShapeType;
			m_children[i].m_transform.serializeFloat(memPtr->m_transform);
		}
		serializer->finalizeChunk(chunk,"btCompoundShapeChildData",BT_ARRAY_CODE,chunk->m_oldPtr);
	}
	return "btCompoundShapeData";
}