summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.cpp
blob: b48d97f2b287683d1a272f29b16f06b0c0d04c2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

///Specialized capsule-capsule collision algorithm has been added for Bullet 2.75 release to increase ragdoll performance
///If you experience problems with capsule-capsule collision, try to define BT_DISABLE_CAPSULE_CAPSULE_COLLIDER and report it in the Bullet forums
///with reproduction case
//#define BT_DISABLE_CAPSULE_CAPSULE_COLLIDER 1
//#define ZERO_MARGIN

#include "btConvexConvexAlgorithm.h"

//#include <stdio.h>
#include "BulletCollision/NarrowPhaseCollision/btDiscreteCollisionDetectorInterface.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "BulletCollision/CollisionShapes/btCapsuleShape.h"
#include "BulletCollision/CollisionShapes/btTriangleShape.h"
#include "BulletCollision/CollisionShapes/btConvexPolyhedron.h"

#include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "BulletCollision/CollisionShapes/btBoxShape.h"
#include "BulletCollision/CollisionDispatch/btManifoldResult.h"

#include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"

#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"

#include "BulletCollision/NarrowPhaseCollision/btMinkowskiPenetrationDepthSolver.h"

#include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btPolyhedralContactClipping.h"
#include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"

///////////

static SIMD_FORCE_INLINE void segmentsClosestPoints(
	btVector3& ptsVector,
	btVector3& offsetA,
	btVector3& offsetB,
	btScalar& tA, btScalar& tB,
	const btVector3& translation,
	const btVector3& dirA, btScalar hlenA,
	const btVector3& dirB, btScalar hlenB)
{
	// compute the parameters of the closest points on each line segment

	btScalar dirA_dot_dirB = btDot(dirA, dirB);
	btScalar dirA_dot_trans = btDot(dirA, translation);
	btScalar dirB_dot_trans = btDot(dirB, translation);

	btScalar denom = 1.0f - dirA_dot_dirB * dirA_dot_dirB;

	if (denom == 0.0f)
	{
		tA = 0.0f;
	}
	else
	{
		tA = (dirA_dot_trans - dirB_dot_trans * dirA_dot_dirB) / denom;
		if (tA < -hlenA)
			tA = -hlenA;
		else if (tA > hlenA)
			tA = hlenA;
	}

	tB = tA * dirA_dot_dirB - dirB_dot_trans;

	if (tB < -hlenB)
	{
		tB = -hlenB;
		tA = tB * dirA_dot_dirB + dirA_dot_trans;

		if (tA < -hlenA)
			tA = -hlenA;
		else if (tA > hlenA)
			tA = hlenA;
	}
	else if (tB > hlenB)
	{
		tB = hlenB;
		tA = tB * dirA_dot_dirB + dirA_dot_trans;

		if (tA < -hlenA)
			tA = -hlenA;
		else if (tA > hlenA)
			tA = hlenA;
	}

	// compute the closest points relative to segment centers.

	offsetA = dirA * tA;
	offsetB = dirB * tB;

	ptsVector = translation - offsetA + offsetB;
}

static SIMD_FORCE_INLINE btScalar capsuleCapsuleDistance(
	btVector3& normalOnB,
	btVector3& pointOnB,
	btScalar capsuleLengthA,
	btScalar capsuleRadiusA,
	btScalar capsuleLengthB,
	btScalar capsuleRadiusB,
	int capsuleAxisA,
	int capsuleAxisB,
	const btTransform& transformA,
	const btTransform& transformB,
	btScalar distanceThreshold)
{
	btVector3 directionA = transformA.getBasis().getColumn(capsuleAxisA);
	btVector3 translationA = transformA.getOrigin();
	btVector3 directionB = transformB.getBasis().getColumn(capsuleAxisB);
	btVector3 translationB = transformB.getOrigin();

	// translation between centers

	btVector3 translation = translationB - translationA;

	// compute the closest points of the capsule line segments

	btVector3 ptsVector;  // the vector between the closest points

	btVector3 offsetA, offsetB;  // offsets from segment centers to their closest points
	btScalar tA, tB;             // parameters on line segment

	segmentsClosestPoints(ptsVector, offsetA, offsetB, tA, tB, translation,
						  directionA, capsuleLengthA, directionB, capsuleLengthB);

	btScalar distance = ptsVector.length() - capsuleRadiusA - capsuleRadiusB;

	if (distance > distanceThreshold)
		return distance;

	btScalar lenSqr = ptsVector.length2();
	if (lenSqr <= (SIMD_EPSILON * SIMD_EPSILON))
	{
		//degenerate case where 2 capsules are likely at the same location: take a vector tangential to 'directionA'
		btVector3 q;
		btPlaneSpace1(directionA, normalOnB, q);
	}
	else
	{
		// compute the contact normal
		normalOnB = ptsVector * -btRecipSqrt(lenSqr);
	}
	pointOnB = transformB.getOrigin() + offsetB + normalOnB * capsuleRadiusB;

	return distance;
}

//////////

btConvexConvexAlgorithm::CreateFunc::CreateFunc(btConvexPenetrationDepthSolver* pdSolver)
{
	m_numPerturbationIterations = 0;
	m_minimumPointsPerturbationThreshold = 3;
	m_pdSolver = pdSolver;
}

btConvexConvexAlgorithm::CreateFunc::~CreateFunc()
{
}

btConvexConvexAlgorithm::btConvexConvexAlgorithm(btPersistentManifold* mf, const btCollisionAlgorithmConstructionInfo& ci, const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, btConvexPenetrationDepthSolver* pdSolver, int numPerturbationIterations, int minimumPointsPerturbationThreshold)
	: btActivatingCollisionAlgorithm(ci, body0Wrap, body1Wrap),
	  m_pdSolver(pdSolver),
	  m_ownManifold(false),
	  m_manifoldPtr(mf),
	  m_lowLevelOfDetail(false),
#ifdef USE_SEPDISTANCE_UTIL2
	  m_sepDistance((static_cast<btConvexShape*>(body0->getCollisionShape()))->getAngularMotionDisc(),
					(static_cast<btConvexShape*>(body1->getCollisionShape()))->getAngularMotionDisc()),
#endif
	  m_numPerturbationIterations(numPerturbationIterations),
	  m_minimumPointsPerturbationThreshold(minimumPointsPerturbationThreshold)
{
	(void)body0Wrap;
	(void)body1Wrap;
}

btConvexConvexAlgorithm::~btConvexConvexAlgorithm()
{
	if (m_ownManifold)
	{
		if (m_manifoldPtr)
			m_dispatcher->releaseManifold(m_manifoldPtr);
	}
}

void btConvexConvexAlgorithm ::setLowLevelOfDetail(bool useLowLevel)
{
	m_lowLevelOfDetail = useLowLevel;
}

struct btPerturbedContactResult : public btManifoldResult
{
	btManifoldResult* m_originalManifoldResult;
	btTransform m_transformA;
	btTransform m_transformB;
	btTransform m_unPerturbedTransform;
	bool m_perturbA;
	btIDebugDraw* m_debugDrawer;

	btPerturbedContactResult(btManifoldResult* originalResult, const btTransform& transformA, const btTransform& transformB, const btTransform& unPerturbedTransform, bool perturbA, btIDebugDraw* debugDrawer)
		: m_originalManifoldResult(originalResult),
		  m_transformA(transformA),
		  m_transformB(transformB),
		  m_unPerturbedTransform(unPerturbedTransform),
		  m_perturbA(perturbA),
		  m_debugDrawer(debugDrawer)
	{
	}
	virtual ~btPerturbedContactResult()
	{
	}

	virtual void addContactPoint(const btVector3& normalOnBInWorld, const btVector3& pointInWorld, btScalar orgDepth)
	{
		btVector3 endPt, startPt;
		btScalar newDepth;
		btVector3 newNormal;

		if (m_perturbA)
		{
			btVector3 endPtOrg = pointInWorld + normalOnBInWorld * orgDepth;
			endPt = (m_unPerturbedTransform * m_transformA.inverse())(endPtOrg);
			newDepth = (endPt - pointInWorld).dot(normalOnBInWorld);
			startPt = endPt - normalOnBInWorld * newDepth;
		}
		else
		{
			endPt = pointInWorld + normalOnBInWorld * orgDepth;
			startPt = (m_unPerturbedTransform * m_transformB.inverse())(pointInWorld);
			newDepth = (endPt - startPt).dot(normalOnBInWorld);
		}

//#define DEBUG_CONTACTS 1
#ifdef DEBUG_CONTACTS
		m_debugDrawer->drawLine(startPt, endPt, btVector3(1, 0, 0));
		m_debugDrawer->drawSphere(startPt, 0.05, btVector3(0, 1, 0));
		m_debugDrawer->drawSphere(endPt, 0.05, btVector3(0, 0, 1));
#endif  //DEBUG_CONTACTS

		m_originalManifoldResult->addContactPoint(normalOnBInWorld, startPt, newDepth);
	}
};

extern btScalar gContactBreakingThreshold;

//
// Convex-Convex collision algorithm
//
void btConvexConvexAlgorithm ::processCollision(const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, const btDispatcherInfo& dispatchInfo, btManifoldResult* resultOut)
{
	if (!m_manifoldPtr)
	{
		//swapped?
		m_manifoldPtr = m_dispatcher->getNewManifold(body0Wrap->getCollisionObject(), body1Wrap->getCollisionObject());
		m_ownManifold = true;
	}
	resultOut->setPersistentManifold(m_manifoldPtr);

	//comment-out next line to test multi-contact generation
	//resultOut->getPersistentManifold()->clearManifold();

	const btConvexShape* min0 = static_cast<const btConvexShape*>(body0Wrap->getCollisionShape());
	const btConvexShape* min1 = static_cast<const btConvexShape*>(body1Wrap->getCollisionShape());

	btVector3 normalOnB;
	btVector3 pointOnBWorld;
#ifndef BT_DISABLE_CAPSULE_CAPSULE_COLLIDER
	if ((min0->getShapeType() == CAPSULE_SHAPE_PROXYTYPE) && (min1->getShapeType() == CAPSULE_SHAPE_PROXYTYPE))
	{
		//m_manifoldPtr->clearManifold();

		btCapsuleShape* capsuleA = (btCapsuleShape*)min0;
		btCapsuleShape* capsuleB = (btCapsuleShape*)min1;

		btScalar threshold = m_manifoldPtr->getContactBreakingThreshold()+ resultOut->m_closestPointDistanceThreshold;

		btScalar dist = capsuleCapsuleDistance(normalOnB, pointOnBWorld, capsuleA->getHalfHeight(), capsuleA->getRadius(),
											   capsuleB->getHalfHeight(), capsuleB->getRadius(), capsuleA->getUpAxis(), capsuleB->getUpAxis(),
											   body0Wrap->getWorldTransform(), body1Wrap->getWorldTransform(), threshold);

		if (dist < threshold)
		{
			btAssert(normalOnB.length2() >= (SIMD_EPSILON * SIMD_EPSILON));
			resultOut->addContactPoint(normalOnB, pointOnBWorld, dist);
		}
		resultOut->refreshContactPoints();
		return;
	}

	if ((min0->getShapeType() == CAPSULE_SHAPE_PROXYTYPE) && (min1->getShapeType() == SPHERE_SHAPE_PROXYTYPE))
	{
		//m_manifoldPtr->clearManifold();

		btCapsuleShape* capsuleA = (btCapsuleShape*)min0;
		btSphereShape* capsuleB = (btSphereShape*)min1;

		btScalar threshold = m_manifoldPtr->getContactBreakingThreshold()+ resultOut->m_closestPointDistanceThreshold;

		btScalar dist = capsuleCapsuleDistance(normalOnB, pointOnBWorld, capsuleA->getHalfHeight(), capsuleA->getRadius(),
											   0., capsuleB->getRadius(), capsuleA->getUpAxis(), 1,
											   body0Wrap->getWorldTransform(), body1Wrap->getWorldTransform(), threshold);

		if (dist < threshold)
		{
			btAssert(normalOnB.length2() >= (SIMD_EPSILON * SIMD_EPSILON));
			resultOut->addContactPoint(normalOnB, pointOnBWorld, dist);
		}
		resultOut->refreshContactPoints();
		return;
	}

	if ((min0->getShapeType() == SPHERE_SHAPE_PROXYTYPE) && (min1->getShapeType() == CAPSULE_SHAPE_PROXYTYPE))
	{
		//m_manifoldPtr->clearManifold();

		btSphereShape* capsuleA = (btSphereShape*)min0;
		btCapsuleShape* capsuleB = (btCapsuleShape*)min1;

		btScalar threshold = m_manifoldPtr->getContactBreakingThreshold()+ resultOut->m_closestPointDistanceThreshold;

		btScalar dist = capsuleCapsuleDistance(normalOnB, pointOnBWorld, 0., capsuleA->getRadius(),
											   capsuleB->getHalfHeight(), capsuleB->getRadius(), 1, capsuleB->getUpAxis(),
											   body0Wrap->getWorldTransform(), body1Wrap->getWorldTransform(), threshold);

		if (dist < threshold)
		{
			btAssert(normalOnB.length2() >= (SIMD_EPSILON * SIMD_EPSILON));
			resultOut->addContactPoint(normalOnB, pointOnBWorld, dist);
		}
		resultOut->refreshContactPoints();
		return;
	}
#endif  //BT_DISABLE_CAPSULE_CAPSULE_COLLIDER

#ifdef USE_SEPDISTANCE_UTIL2
	if (dispatchInfo.m_useConvexConservativeDistanceUtil)
	{
		m_sepDistance.updateSeparatingDistance(body0->getWorldTransform(), body1->getWorldTransform());
	}

	if (!dispatchInfo.m_useConvexConservativeDistanceUtil || m_sepDistance.getConservativeSeparatingDistance() <= 0.f)
#endif  //USE_SEPDISTANCE_UTIL2

	{
		btGjkPairDetector::ClosestPointInput input;
		btVoronoiSimplexSolver simplexSolver;
		btGjkPairDetector gjkPairDetector(min0, min1, &simplexSolver, m_pdSolver);
		//TODO: if (dispatchInfo.m_useContinuous)
		gjkPairDetector.setMinkowskiA(min0);
		gjkPairDetector.setMinkowskiB(min1);

#ifdef USE_SEPDISTANCE_UTIL2
		if (dispatchInfo.m_useConvexConservativeDistanceUtil)
		{
			input.m_maximumDistanceSquared = BT_LARGE_FLOAT;
		}
		else
#endif  //USE_SEPDISTANCE_UTIL2
		{
			//if (dispatchInfo.m_convexMaxDistanceUseCPT)
			//{
			//	input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactProcessingThreshold();
			//} else
			//{
			input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold() + resultOut->m_closestPointDistanceThreshold;
			//		}

			input.m_maximumDistanceSquared *= input.m_maximumDistanceSquared;
		}

		input.m_transformA = body0Wrap->getWorldTransform();
		input.m_transformB = body1Wrap->getWorldTransform();

#ifdef USE_SEPDISTANCE_UTIL2
		btScalar sepDist = 0.f;
		if (dispatchInfo.m_useConvexConservativeDistanceUtil)
		{
			sepDist = gjkPairDetector.getCachedSeparatingDistance();
			if (sepDist > SIMD_EPSILON)
			{
				sepDist += dispatchInfo.m_convexConservativeDistanceThreshold;
				//now perturbe directions to get multiple contact points
			}
		}
#endif  //USE_SEPDISTANCE_UTIL2

		if (min0->isPolyhedral() && min1->isPolyhedral())
		{
			struct btDummyResult : public btDiscreteCollisionDetectorInterface::Result
			{
				btVector3 m_normalOnBInWorld;
				btVector3 m_pointInWorld;
				btScalar m_depth;
				bool m_hasContact;

				btDummyResult()
					: m_hasContact(false)
				{
				}

				virtual void setShapeIdentifiersA(int partId0, int index0) {}
				virtual void setShapeIdentifiersB(int partId1, int index1) {}
				virtual void addContactPoint(const btVector3& normalOnBInWorld, const btVector3& pointInWorld, btScalar depth)
				{
					m_hasContact = true;
					m_normalOnBInWorld = normalOnBInWorld;
					m_pointInWorld = pointInWorld;
					m_depth = depth;
				}
			};

			struct btWithoutMarginResult : public btDiscreteCollisionDetectorInterface::Result
			{
				btDiscreteCollisionDetectorInterface::Result* m_originalResult;
				btVector3 m_reportedNormalOnWorld;
				btScalar m_marginOnA;
				btScalar m_marginOnB;
				btScalar m_reportedDistance;

				bool m_foundResult;
				btWithoutMarginResult(btDiscreteCollisionDetectorInterface::Result* result, btScalar marginOnA, btScalar marginOnB)
					: m_originalResult(result),
					  m_marginOnA(marginOnA),
					  m_marginOnB(marginOnB),
					  m_foundResult(false)
				{
				}

				virtual void setShapeIdentifiersA(int partId0, int index0) {}
				virtual void setShapeIdentifiersB(int partId1, int index1) {}
				virtual void addContactPoint(const btVector3& normalOnBInWorld, const btVector3& pointInWorldOrg, btScalar depthOrg)
				{
					m_reportedDistance = depthOrg;
					m_reportedNormalOnWorld = normalOnBInWorld;

					btVector3 adjustedPointB = pointInWorldOrg - normalOnBInWorld * m_marginOnB;
					m_reportedDistance = depthOrg + (m_marginOnA + m_marginOnB);
					if (m_reportedDistance < 0.f)
					{
						m_foundResult = true;
					}
					m_originalResult->addContactPoint(normalOnBInWorld, adjustedPointB, m_reportedDistance);
				}
			};

			btDummyResult dummy;

			///btBoxShape is an exception: its vertices are created WITH margin so don't subtract it

			btScalar min0Margin = min0->getShapeType() == BOX_SHAPE_PROXYTYPE ? 0.f : min0->getMargin();
			btScalar min1Margin = min1->getShapeType() == BOX_SHAPE_PROXYTYPE ? 0.f : min1->getMargin();

			btWithoutMarginResult withoutMargin(resultOut, min0Margin, min1Margin);

			btPolyhedralConvexShape* polyhedronA = (btPolyhedralConvexShape*)min0;
			btPolyhedralConvexShape* polyhedronB = (btPolyhedralConvexShape*)min1;
			if (polyhedronA->getConvexPolyhedron() && polyhedronB->getConvexPolyhedron())
			{
				btScalar threshold = m_manifoldPtr->getContactBreakingThreshold()+ resultOut->m_closestPointDistanceThreshold;

				btScalar minDist = -1e30f;
				btVector3 sepNormalWorldSpace;
				bool foundSepAxis = true;

				if (dispatchInfo.m_enableSatConvex)
				{
					foundSepAxis = btPolyhedralContactClipping::findSeparatingAxis(
						*polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(),
						body0Wrap->getWorldTransform(),
						body1Wrap->getWorldTransform(),
						sepNormalWorldSpace, *resultOut);
				}
				else
				{
#ifdef ZERO_MARGIN
					gjkPairDetector.setIgnoreMargin(true);
					gjkPairDetector.getClosestPoints(input, *resultOut, dispatchInfo.m_debugDraw);
#else

					gjkPairDetector.getClosestPoints(input, withoutMargin, dispatchInfo.m_debugDraw);
					//gjkPairDetector.getClosestPoints(input,dummy,dispatchInfo.m_debugDraw);
#endif  //ZERO_MARGIN
					//btScalar l2 = gjkPairDetector.getCachedSeparatingAxis().length2();
					//if (l2>SIMD_EPSILON)
					{
						sepNormalWorldSpace = withoutMargin.m_reportedNormalOnWorld;  //gjkPairDetector.getCachedSeparatingAxis()*(1.f/l2);
						//minDist = -1e30f;//gjkPairDetector.getCachedSeparatingDistance();
						minDist = withoutMargin.m_reportedDistance;  //gjkPairDetector.getCachedSeparatingDistance()+min0->getMargin()+min1->getMargin();

#ifdef ZERO_MARGIN
						foundSepAxis = true;  //gjkPairDetector.getCachedSeparatingDistance()<0.f;
#else
						foundSepAxis = withoutMargin.m_foundResult && minDist < 0;  //-(min0->getMargin()+min1->getMargin());
#endif
					}
				}
				if (foundSepAxis)
				{
					//				printf("sepNormalWorldSpace=%f,%f,%f\n",sepNormalWorldSpace.getX(),sepNormalWorldSpace.getY(),sepNormalWorldSpace.getZ());

					worldVertsB1.resize(0);
					btPolyhedralContactClipping::clipHullAgainstHull(sepNormalWorldSpace, *polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(),
																	 body0Wrap->getWorldTransform(),
																	 body1Wrap->getWorldTransform(), minDist - threshold, threshold, worldVertsB1, worldVertsB2,
																	 *resultOut);
				}
				if (m_ownManifold)
				{
					resultOut->refreshContactPoints();
				}
				return;
			}
			else
			{
				//we can also deal with convex versus triangle (without connectivity data)
				if (dispatchInfo.m_enableSatConvex && polyhedronA->getConvexPolyhedron() && polyhedronB->getShapeType() == TRIANGLE_SHAPE_PROXYTYPE)
				{
					btVertexArray worldSpaceVertices;
					btTriangleShape* tri = (btTriangleShape*)polyhedronB;
					worldSpaceVertices.push_back(body1Wrap->getWorldTransform() * tri->m_vertices1[0]);
					worldSpaceVertices.push_back(body1Wrap->getWorldTransform() * tri->m_vertices1[1]);
					worldSpaceVertices.push_back(body1Wrap->getWorldTransform() * tri->m_vertices1[2]);

					//tri->initializePolyhedralFeatures();

					btScalar threshold = m_manifoldPtr->getContactBreakingThreshold()+ resultOut->m_closestPointDistanceThreshold;

					btVector3 sepNormalWorldSpace;
					btScalar minDist = -1e30f;
					btScalar maxDist = threshold;

					bool foundSepAxis = false;
					bool useSatSepNormal = true;

					if (useSatSepNormal)
					{
#if 0
					if (0)
					{
						//initializePolyhedralFeatures performs a convex hull computation, not needed for a single triangle
						polyhedronB->initializePolyhedralFeatures();
					} else
#endif
						{
							btVector3 uniqueEdges[3] = {tri->m_vertices1[1] - tri->m_vertices1[0],
														tri->m_vertices1[2] - tri->m_vertices1[1],
														tri->m_vertices1[0] - tri->m_vertices1[2]};

							uniqueEdges[0].normalize();
							uniqueEdges[1].normalize();
							uniqueEdges[2].normalize();

							btConvexPolyhedron polyhedron;
							polyhedron.m_vertices.push_back(tri->m_vertices1[2]);
							polyhedron.m_vertices.push_back(tri->m_vertices1[0]);
							polyhedron.m_vertices.push_back(tri->m_vertices1[1]);

							{
								btFace combinedFaceA;
								combinedFaceA.m_indices.push_back(0);
								combinedFaceA.m_indices.push_back(1);
								combinedFaceA.m_indices.push_back(2);
								btVector3 faceNormal = uniqueEdges[0].cross(uniqueEdges[1]);
								faceNormal.normalize();
								btScalar planeEq = 1e30f;
								for (int v = 0; v < combinedFaceA.m_indices.size(); v++)
								{
									btScalar eq = tri->m_vertices1[combinedFaceA.m_indices[v]].dot(faceNormal);
									if (planeEq > eq)
									{
										planeEq = eq;
									}
								}
								combinedFaceA.m_plane[0] = faceNormal[0];
								combinedFaceA.m_plane[1] = faceNormal[1];
								combinedFaceA.m_plane[2] = faceNormal[2];
								combinedFaceA.m_plane[3] = -planeEq;
								polyhedron.m_faces.push_back(combinedFaceA);
							}
							{
								btFace combinedFaceB;
								combinedFaceB.m_indices.push_back(0);
								combinedFaceB.m_indices.push_back(2);
								combinedFaceB.m_indices.push_back(1);
								btVector3 faceNormal = -uniqueEdges[0].cross(uniqueEdges[1]);
								faceNormal.normalize();
								btScalar planeEq = 1e30f;
								for (int v = 0; v < combinedFaceB.m_indices.size(); v++)
								{
									btScalar eq = tri->m_vertices1[combinedFaceB.m_indices[v]].dot(faceNormal);
									if (planeEq > eq)
									{
										planeEq = eq;
									}
								}

								combinedFaceB.m_plane[0] = faceNormal[0];
								combinedFaceB.m_plane[1] = faceNormal[1];
								combinedFaceB.m_plane[2] = faceNormal[2];
								combinedFaceB.m_plane[3] = -planeEq;
								polyhedron.m_faces.push_back(combinedFaceB);
							}

							polyhedron.m_uniqueEdges.push_back(uniqueEdges[0]);
							polyhedron.m_uniqueEdges.push_back(uniqueEdges[1]);
							polyhedron.m_uniqueEdges.push_back(uniqueEdges[2]);
							polyhedron.initialize2();

							polyhedronB->setPolyhedralFeatures(polyhedron);
						}

						foundSepAxis = btPolyhedralContactClipping::findSeparatingAxis(
							*polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(),
							body0Wrap->getWorldTransform(),
							body1Wrap->getWorldTransform(),
							sepNormalWorldSpace, *resultOut);
						//	 printf("sepNormalWorldSpace=%f,%f,%f\n",sepNormalWorldSpace.getX(),sepNormalWorldSpace.getY(),sepNormalWorldSpace.getZ());
					}
					else
					{
#ifdef ZERO_MARGIN
						gjkPairDetector.setIgnoreMargin(true);
						gjkPairDetector.getClosestPoints(input, *resultOut, dispatchInfo.m_debugDraw);
#else
						gjkPairDetector.getClosestPoints(input, dummy, dispatchInfo.m_debugDraw);
#endif  //ZERO_MARGIN

						if (dummy.m_hasContact && dummy.m_depth < 0)
						{
							if (foundSepAxis)
							{
								if (dummy.m_normalOnBInWorld.dot(sepNormalWorldSpace) < 0.99)
								{
									printf("?\n");
								}
							}
							else
							{
								printf("!\n");
							}
							sepNormalWorldSpace.setValue(0, 0, 1);  // = dummy.m_normalOnBInWorld;
							//minDist = dummy.m_depth;
							foundSepAxis = true;
						}
#if 0
					btScalar l2 = gjkPairDetector.getCachedSeparatingAxis().length2();
					if (l2>SIMD_EPSILON)
					{
						sepNormalWorldSpace = gjkPairDetector.getCachedSeparatingAxis()*(1.f/l2);
						//minDist = gjkPairDetector.getCachedSeparatingDistance();
						//maxDist = threshold;
						minDist = gjkPairDetector.getCachedSeparatingDistance()-min0->getMargin()-min1->getMargin();
						foundSepAxis = true;
					}
#endif
					}

					if (foundSepAxis)
					{
						worldVertsB2.resize(0);
						btPolyhedralContactClipping::clipFaceAgainstHull(sepNormalWorldSpace, *polyhedronA->getConvexPolyhedron(),
																		 body0Wrap->getWorldTransform(), worldSpaceVertices, worldVertsB2, minDist - threshold, maxDist, *resultOut);
					}

					if (m_ownManifold)
					{
						resultOut->refreshContactPoints();
					}

					return;
				}
			}
		}

		gjkPairDetector.getClosestPoints(input, *resultOut, dispatchInfo.m_debugDraw);

		//now perform 'm_numPerturbationIterations' collision queries with the perturbated collision objects

		//perform perturbation when more then 'm_minimumPointsPerturbationThreshold' points
		if (m_numPerturbationIterations && resultOut->getPersistentManifold()->getNumContacts() < m_minimumPointsPerturbationThreshold)
		{
			int i;
			btVector3 v0, v1;
			btVector3 sepNormalWorldSpace;
			btScalar l2 = gjkPairDetector.getCachedSeparatingAxis().length2();

			if (l2 > SIMD_EPSILON)
			{
				sepNormalWorldSpace = gjkPairDetector.getCachedSeparatingAxis() * (1.f / l2);

				btPlaneSpace1(sepNormalWorldSpace, v0, v1);

				bool perturbeA = true;
				const btScalar angleLimit = 0.125f * SIMD_PI;
				btScalar perturbeAngle;
				btScalar radiusA = min0->getAngularMotionDisc();
				btScalar radiusB = min1->getAngularMotionDisc();
				if (radiusA < radiusB)
				{
					perturbeAngle = gContactBreakingThreshold / radiusA;
					perturbeA = true;
				}
				else
				{
					perturbeAngle = gContactBreakingThreshold / radiusB;
					perturbeA = false;
				}
				if (perturbeAngle > angleLimit)
					perturbeAngle = angleLimit;

				btTransform unPerturbedTransform;
				if (perturbeA)
				{
					unPerturbedTransform = input.m_transformA;
				}
				else
				{
					unPerturbedTransform = input.m_transformB;
				}

				for (i = 0; i < m_numPerturbationIterations; i++)
				{
					if (v0.length2() > SIMD_EPSILON)
					{
						btQuaternion perturbeRot(v0, perturbeAngle);
						btScalar iterationAngle = i * (SIMD_2_PI / btScalar(m_numPerturbationIterations));
						btQuaternion rotq(sepNormalWorldSpace, iterationAngle);

						if (perturbeA)
						{
							input.m_transformA.setBasis(btMatrix3x3(rotq.inverse() * perturbeRot * rotq) * body0Wrap->getWorldTransform().getBasis());
							input.m_transformB = body1Wrap->getWorldTransform();
#ifdef DEBUG_CONTACTS
							dispatchInfo.m_debugDraw->drawTransform(input.m_transformA, 10.0);
#endif  //DEBUG_CONTACTS
						}
						else
						{
							input.m_transformA = body0Wrap->getWorldTransform();
							input.m_transformB.setBasis(btMatrix3x3(rotq.inverse() * perturbeRot * rotq) * body1Wrap->getWorldTransform().getBasis());
#ifdef DEBUG_CONTACTS
							dispatchInfo.m_debugDraw->drawTransform(input.m_transformB, 10.0);
#endif
						}

						btPerturbedContactResult perturbedResultOut(resultOut, input.m_transformA, input.m_transformB, unPerturbedTransform, perturbeA, dispatchInfo.m_debugDraw);
						gjkPairDetector.getClosestPoints(input, perturbedResultOut, dispatchInfo.m_debugDraw);
					}
				}
			}
		}

#ifdef USE_SEPDISTANCE_UTIL2
		if (dispatchInfo.m_useConvexConservativeDistanceUtil && (sepDist > SIMD_EPSILON))
		{
			m_sepDistance.initSeparatingDistance(gjkPairDetector.getCachedSeparatingAxis(), sepDist, body0->getWorldTransform(), body1->getWorldTransform());
		}
#endif  //USE_SEPDISTANCE_UTIL2
	}

	if (m_ownManifold)
	{
		resultOut->refreshContactPoints();
	}
}

bool disableCcd = false;
btScalar btConvexConvexAlgorithm::calculateTimeOfImpact(btCollisionObject* col0, btCollisionObject* col1, const btDispatcherInfo& dispatchInfo, btManifoldResult* resultOut)
{
	(void)resultOut;
	(void)dispatchInfo;
	///Rather then checking ALL pairs, only calculate TOI when motion exceeds threshold

	///Linear motion for one of objects needs to exceed m_ccdSquareMotionThreshold
	///col0->m_worldTransform,
	btScalar resultFraction = btScalar(1.);

	btScalar squareMot0 = (col0->getInterpolationWorldTransform().getOrigin() - col0->getWorldTransform().getOrigin()).length2();
	btScalar squareMot1 = (col1->getInterpolationWorldTransform().getOrigin() - col1->getWorldTransform().getOrigin()).length2();

	if (squareMot0 < col0->getCcdSquareMotionThreshold() &&
		squareMot1 < col1->getCcdSquareMotionThreshold())
		return resultFraction;

	if (disableCcd)
		return btScalar(1.);

	//An adhoc way of testing the Continuous Collision Detection algorithms
	//One object is approximated as a sphere, to simplify things
	//Starting in penetration should report no time of impact
	//For proper CCD, better accuracy and handling of 'allowed' penetration should be added
	//also the mainloop of the physics should have a kind of toi queue (something like Brian Mirtich's application of Timewarp for Rigidbodies)

	/// Convex0 against sphere for Convex1
	{
		btConvexShape* convex0 = static_cast<btConvexShape*>(col0->getCollisionShape());

		btSphereShape sphere1(col1->getCcdSweptSphereRadius());  //todo: allow non-zero sphere sizes, for better approximation
		btConvexCast::CastResult result;
		btVoronoiSimplexSolver voronoiSimplex;
		//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
		///Simplification, one object is simplified as a sphere
		btGjkConvexCast ccd1(convex0, &sphere1, &voronoiSimplex);
		//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
		if (ccd1.calcTimeOfImpact(col0->getWorldTransform(), col0->getInterpolationWorldTransform(),
								  col1->getWorldTransform(), col1->getInterpolationWorldTransform(), result))
		{
			//store result.m_fraction in both bodies

			if (col0->getHitFraction() > result.m_fraction)
				col0->setHitFraction(result.m_fraction);

			if (col1->getHitFraction() > result.m_fraction)
				col1->setHitFraction(result.m_fraction);

			if (resultFraction > result.m_fraction)
				resultFraction = result.m_fraction;
		}
	}

	/// Sphere (for convex0) against Convex1
	{
		btConvexShape* convex1 = static_cast<btConvexShape*>(col1->getCollisionShape());

		btSphereShape sphere0(col0->getCcdSweptSphereRadius());  //todo: allow non-zero sphere sizes, for better approximation
		btConvexCast::CastResult result;
		btVoronoiSimplexSolver voronoiSimplex;
		//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
		///Simplification, one object is simplified as a sphere
		btGjkConvexCast ccd1(&sphere0, convex1, &voronoiSimplex);
		//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
		if (ccd1.calcTimeOfImpact(col0->getWorldTransform(), col0->getInterpolationWorldTransform(),
								  col1->getWorldTransform(), col1->getInterpolationWorldTransform(), result))
		{
			//store result.m_fraction in both bodies

			if (col0->getHitFraction() > result.m_fraction)
				col0->setHitFraction(result.m_fraction);

			if (col1->getHitFraction() > result.m_fraction)
				col1->setHitFraction(result.m_fraction);

			if (resultFraction > result.m_fraction)
				resultFraction = result.m_fraction;
		}
	}

	return resultFraction;
}