summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletCollision/CollisionDispatch/btCompoundCompoundCollisionAlgorithm.cpp
blob: d4a1aa78e4ee6a8d0d8e81eca14cd79a2d681bd5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2013 Erwin Coumans  http://bulletphysics.org

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

*/

#include "btCompoundCompoundCollisionAlgorithm.h"
#include "LinearMath/btQuickprof.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
#include "BulletCollision/BroadphaseCollision/btDbvt.h"
#include "LinearMath/btIDebugDraw.h"
#include "LinearMath/btAabbUtil2.h"
#include "BulletCollision/CollisionDispatch/btManifoldResult.h"
#include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"

//USE_LOCAL_STACK will avoid most (often all) dynamic memory allocations due to resizing in processCollision and MycollideTT
#define USE_LOCAL_STACK 1

btShapePairCallback gCompoundCompoundChildShapePairCallback = 0;

btCompoundCompoundCollisionAlgorithm::btCompoundCompoundCollisionAlgorithm( const btCollisionAlgorithmConstructionInfo& ci,const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,bool isSwapped)
:btCompoundCollisionAlgorithm(ci,body0Wrap,body1Wrap,isSwapped)
{

	void* ptr = btAlignedAlloc(sizeof(btHashedSimplePairCache),16);
	m_childCollisionAlgorithmCache= new(ptr) btHashedSimplePairCache();

	const btCollisionObjectWrapper* col0ObjWrap = body0Wrap;
	btAssert (col0ObjWrap->getCollisionShape()->isCompound());

	const btCollisionObjectWrapper* col1ObjWrap = body1Wrap;
	btAssert (col1ObjWrap->getCollisionShape()->isCompound());
	
	const btCompoundShape* compoundShape0 = static_cast<const btCompoundShape*>(col0ObjWrap->getCollisionShape());
	m_compoundShapeRevision0 = compoundShape0->getUpdateRevision();

	const btCompoundShape* compoundShape1 = static_cast<const btCompoundShape*>(col1ObjWrap->getCollisionShape());
	m_compoundShapeRevision1 = compoundShape1->getUpdateRevision();
	
	
}


btCompoundCompoundCollisionAlgorithm::~btCompoundCompoundCollisionAlgorithm()
{
	removeChildAlgorithms();
	m_childCollisionAlgorithmCache->~btHashedSimplePairCache();
	btAlignedFree(m_childCollisionAlgorithmCache);
}

void	btCompoundCompoundCollisionAlgorithm::getAllContactManifolds(btManifoldArray&	manifoldArray)
{
	int i;
	btSimplePairArray& pairs = m_childCollisionAlgorithmCache->getOverlappingPairArray();
	for (i=0;i<pairs.size();i++)
	{
		if (pairs[i].m_userPointer)
		{
			
			((btCollisionAlgorithm*)pairs[i].m_userPointer)->getAllContactManifolds(manifoldArray);
		}
	}
}


void	btCompoundCompoundCollisionAlgorithm::removeChildAlgorithms()
{
	btSimplePairArray& pairs = m_childCollisionAlgorithmCache->getOverlappingPairArray();

	int numChildren = pairs.size();
	int i;
	for (i=0;i<numChildren;i++)
	{
		if (pairs[i].m_userPointer)
		{
			btCollisionAlgorithm* algo = (btCollisionAlgorithm*) pairs[i].m_userPointer;
			algo->~btCollisionAlgorithm();
			m_dispatcher->freeCollisionAlgorithm(algo);
		}
	}
	m_childCollisionAlgorithmCache->removeAllPairs();
}

struct	btCompoundCompoundLeafCallback : btDbvt::ICollide
{
	int m_numOverlapPairs;


	const btCollisionObjectWrapper* m_compound0ColObjWrap;
	const btCollisionObjectWrapper* m_compound1ColObjWrap;
	btDispatcher* m_dispatcher;
	const btDispatcherInfo& m_dispatchInfo;
	btManifoldResult*	m_resultOut;
	
	
	class btHashedSimplePairCache*	m_childCollisionAlgorithmCache;
	
	btPersistentManifold*	m_sharedManifold;
	
	btCompoundCompoundLeafCallback (const btCollisionObjectWrapper* compound1ObjWrap,
									const btCollisionObjectWrapper* compound0ObjWrap,
									btDispatcher* dispatcher,
									const btDispatcherInfo& dispatchInfo,
									btManifoldResult*	resultOut,
									btHashedSimplePairCache* childAlgorithmsCache,
									btPersistentManifold*	sharedManifold)
		:m_numOverlapPairs(0),m_compound0ColObjWrap(compound1ObjWrap),m_compound1ColObjWrap(compound0ObjWrap),m_dispatcher(dispatcher),m_dispatchInfo(dispatchInfo),m_resultOut(resultOut),
		m_childCollisionAlgorithmCache(childAlgorithmsCache),
		m_sharedManifold(sharedManifold)
	{

	}



	
	void		Process(const btDbvtNode* leaf0,const btDbvtNode* leaf1)
	{
		BT_PROFILE("btCompoundCompoundLeafCallback::Process");
		m_numOverlapPairs++;


		int childIndex0 = leaf0->dataAsInt;
		int childIndex1 = leaf1->dataAsInt;
		

		btAssert(childIndex0>=0);
		btAssert(childIndex1>=0);


		const btCompoundShape* compoundShape0 = static_cast<const btCompoundShape*>(m_compound0ColObjWrap->getCollisionShape());
		btAssert(childIndex0<compoundShape0->getNumChildShapes());

		const btCompoundShape* compoundShape1 = static_cast<const btCompoundShape*>(m_compound1ColObjWrap->getCollisionShape());
		btAssert(childIndex1<compoundShape1->getNumChildShapes());

		const btCollisionShape* childShape0 = compoundShape0->getChildShape(childIndex0);
		const btCollisionShape* childShape1 = compoundShape1->getChildShape(childIndex1);

		//backup
		btTransform	orgTrans0 = m_compound0ColObjWrap->getWorldTransform();
		const btTransform& childTrans0 = compoundShape0->getChildTransform(childIndex0);
		btTransform	newChildWorldTrans0 = orgTrans0*childTrans0 ;
		
		btTransform	orgTrans1 = m_compound1ColObjWrap->getWorldTransform();
		const btTransform& childTrans1 = compoundShape1->getChildTransform(childIndex1);
		btTransform	newChildWorldTrans1 = orgTrans1*childTrans1 ;
		

		//perform an AABB check first
		btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1;
		childShape0->getAabb(newChildWorldTrans0,aabbMin0,aabbMax0);
		childShape1->getAabb(newChildWorldTrans1,aabbMin1,aabbMax1);
		
		btVector3 thresholdVec(m_resultOut->m_closestPointDistanceThreshold, m_resultOut->m_closestPointDistanceThreshold, m_resultOut->m_closestPointDistanceThreshold);

		aabbMin0 -= thresholdVec;
		aabbMax0 += thresholdVec;

		if (gCompoundCompoundChildShapePairCallback)
		{
			if (!gCompoundCompoundChildShapePairCallback(childShape0,childShape1))
				return;
		}

		if (TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1))
		{
			btCollisionObjectWrapper compoundWrap0(this->m_compound0ColObjWrap,childShape0, m_compound0ColObjWrap->getCollisionObject(),newChildWorldTrans0,-1,childIndex0);
			btCollisionObjectWrapper compoundWrap1(this->m_compound1ColObjWrap,childShape1,m_compound1ColObjWrap->getCollisionObject(),newChildWorldTrans1,-1,childIndex1);
			

			btSimplePair* pair = m_childCollisionAlgorithmCache->findPair(childIndex0,childIndex1);

			btCollisionAlgorithm* colAlgo = 0;
			if (m_resultOut->m_closestPointDistanceThreshold > 0)
			{
				colAlgo = m_dispatcher->findAlgorithm(&compoundWrap0, &compoundWrap1, 0, BT_CLOSEST_POINT_ALGORITHMS);
			}
			else
			{
				if (pair)
				{
					colAlgo = (btCollisionAlgorithm*)pair->m_userPointer;

				}
				else
				{
					colAlgo = m_dispatcher->findAlgorithm(&compoundWrap0, &compoundWrap1, m_sharedManifold, BT_CONTACT_POINT_ALGORITHMS);
					pair = m_childCollisionAlgorithmCache->addOverlappingPair(childIndex0, childIndex1);
					btAssert(pair);
					pair->m_userPointer = colAlgo;
				}
			}

			btAssert(colAlgo);
						
			const btCollisionObjectWrapper* tmpWrap0 = 0;
			const btCollisionObjectWrapper* tmpWrap1 = 0;

			tmpWrap0 = m_resultOut->getBody0Wrap();
			tmpWrap1 = m_resultOut->getBody1Wrap();

			m_resultOut->setBody0Wrap(&compoundWrap0);
			m_resultOut->setBody1Wrap(&compoundWrap1);

			m_resultOut->setShapeIdentifiersA(-1,childIndex0);
			m_resultOut->setShapeIdentifiersB(-1,childIndex1);


			colAlgo->processCollision(&compoundWrap0,&compoundWrap1,m_dispatchInfo,m_resultOut);
			
			m_resultOut->setBody0Wrap(tmpWrap0);
			m_resultOut->setBody1Wrap(tmpWrap1);
			


		}
	}
};


static DBVT_INLINE bool		MyIntersect(	const btDbvtAabbMm& a,
								  const btDbvtAabbMm& b, const btTransform& xform, btScalar distanceThreshold)
{
	btVector3 newmin,newmax;
	btTransformAabb(b.Mins(),b.Maxs(),0.f,xform,newmin,newmax);
	newmin -= btVector3(distanceThreshold, distanceThreshold, distanceThreshold);
	newmax += btVector3(distanceThreshold, distanceThreshold, distanceThreshold);
	btDbvtAabbMm newb = btDbvtAabbMm::FromMM(newmin,newmax);
	return Intersect(a,newb);
}


static inline void		MycollideTT(	const btDbvtNode* root0,
								  const btDbvtNode* root1,
								  const btTransform& xform,
								  btCompoundCompoundLeafCallback* callback, btScalar distanceThreshold)
{

		if(root0&&root1)
		{
			int								depth=1;
			int								treshold=btDbvt::DOUBLE_STACKSIZE-4;
			btAlignedObjectArray<btDbvt::sStkNN>	stkStack;
#ifdef USE_LOCAL_STACK
			ATTRIBUTE_ALIGNED16(btDbvt::sStkNN localStack[btDbvt::DOUBLE_STACKSIZE]);
			stkStack.initializeFromBuffer(&localStack,btDbvt::DOUBLE_STACKSIZE,btDbvt::DOUBLE_STACKSIZE);
#else
			stkStack.resize(btDbvt::DOUBLE_STACKSIZE);
#endif
			stkStack[0]=btDbvt::sStkNN(root0,root1);
			do	{
				btDbvt::sStkNN	p=stkStack[--depth];
				if(MyIntersect(p.a->volume,p.b->volume,xform, distanceThreshold))
				{
					if(depth>treshold)
					{
						stkStack.resize(stkStack.size()*2);
						treshold=stkStack.size()-4;
					}
					if(p.a->isinternal())
					{
						if(p.b->isinternal())
						{					
							stkStack[depth++]=btDbvt::sStkNN(p.a->childs[0],p.b->childs[0]);
							stkStack[depth++]=btDbvt::sStkNN(p.a->childs[1],p.b->childs[0]);
							stkStack[depth++]=btDbvt::sStkNN(p.a->childs[0],p.b->childs[1]);
							stkStack[depth++]=btDbvt::sStkNN(p.a->childs[1],p.b->childs[1]);
						}
						else
						{
							stkStack[depth++]=btDbvt::sStkNN(p.a->childs[0],p.b);
							stkStack[depth++]=btDbvt::sStkNN(p.a->childs[1],p.b);
						}
					}
					else
					{
						if(p.b->isinternal())
						{
							stkStack[depth++]=btDbvt::sStkNN(p.a,p.b->childs[0]);
							stkStack[depth++]=btDbvt::sStkNN(p.a,p.b->childs[1]);
						}
						else
						{
							callback->Process(p.a,p.b);
						}
					}
				}
			} while(depth);
		}
}

void btCompoundCompoundCollisionAlgorithm::processCollision (const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{

	const btCollisionObjectWrapper* col0ObjWrap = body0Wrap;
	const btCollisionObjectWrapper* col1ObjWrap= body1Wrap;

	btAssert (col0ObjWrap->getCollisionShape()->isCompound());
	btAssert (col1ObjWrap->getCollisionShape()->isCompound());
	const btCompoundShape* compoundShape0 = static_cast<const btCompoundShape*>(col0ObjWrap->getCollisionShape());
	const btCompoundShape* compoundShape1 = static_cast<const btCompoundShape*>(col1ObjWrap->getCollisionShape());

	const btDbvt* tree0 = compoundShape0->getDynamicAabbTree();
	const btDbvt* tree1 = compoundShape1->getDynamicAabbTree();
	if (!tree0 || !tree1)
	{
		return btCompoundCollisionAlgorithm::processCollision(body0Wrap,body1Wrap,dispatchInfo,resultOut);
	}
	///btCompoundShape might have changed:
	////make sure the internal child collision algorithm caches are still valid
	if ((compoundShape0->getUpdateRevision() != m_compoundShapeRevision0) || (compoundShape1->getUpdateRevision() != m_compoundShapeRevision1))
	{
		///clear all
		removeChildAlgorithms();
		m_compoundShapeRevision0 = compoundShape0->getUpdateRevision();
		m_compoundShapeRevision1 = compoundShape1->getUpdateRevision();

	}


	///we need to refresh all contact manifolds
	///note that we should actually recursively traverse all children, btCompoundShape can nested more then 1 level deep
	///so we should add a 'refreshManifolds' in the btCollisionAlgorithm
	{
		int i;
		btManifoldArray manifoldArray;
#ifdef USE_LOCAL_STACK 
		btPersistentManifold localManifolds[4];
		manifoldArray.initializeFromBuffer(&localManifolds,0,4);
#endif
		btSimplePairArray& pairs = m_childCollisionAlgorithmCache->getOverlappingPairArray();
		for (i=0;i<pairs.size();i++)
		{
			if (pairs[i].m_userPointer)
			{
				btCollisionAlgorithm* algo = (btCollisionAlgorithm*) pairs[i].m_userPointer;
				algo->getAllContactManifolds(manifoldArray);
				for (int m=0;m<manifoldArray.size();m++)
				{
					if (manifoldArray[m]->getNumContacts())
					{
						resultOut->setPersistentManifold(manifoldArray[m]);
						resultOut->refreshContactPoints();
						resultOut->setPersistentManifold(0);
					}
				}
				manifoldArray.resize(0);
			}
		}
	}


	

	btCompoundCompoundLeafCallback callback(col0ObjWrap,col1ObjWrap,this->m_dispatcher,dispatchInfo,resultOut,this->m_childCollisionAlgorithmCache,m_sharedManifold);


	const btTransform	xform=col0ObjWrap->getWorldTransform().inverse()*col1ObjWrap->getWorldTransform();
	MycollideTT(tree0->m_root,tree1->m_root,xform,&callback, resultOut->m_closestPointDistanceThreshold);

	//printf("#compound-compound child/leaf overlap =%d                      \r",callback.m_numOverlapPairs);

	//remove non-overlapping child pairs

	{
		btAssert(m_removePairs.size()==0);

		//iterate over all children, perform an AABB check inside ProcessChildShape
		btSimplePairArray& pairs = m_childCollisionAlgorithmCache->getOverlappingPairArray();
		
		int i;
		btManifoldArray	manifoldArray;
        
		

        
        
        btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1;        
        
		for (i=0;i<pairs.size();i++)
		{
			if (pairs[i].m_userPointer)
			{
				btCollisionAlgorithm* algo = (btCollisionAlgorithm*)pairs[i].m_userPointer;

				{
					btTransform	orgTrans0;
					const btCollisionShape* childShape0 = 0;
					
					btTransform	newChildWorldTrans0;
					btTransform	orgInterpolationTrans0;
					childShape0 = compoundShape0->getChildShape(pairs[i].m_indexA);
					orgTrans0 = col0ObjWrap->getWorldTransform();
					orgInterpolationTrans0 = col0ObjWrap->getWorldTransform();
					const btTransform& childTrans0 = compoundShape0->getChildTransform(pairs[i].m_indexA);
					newChildWorldTrans0 = orgTrans0*childTrans0 ;
					childShape0->getAabb(newChildWorldTrans0,aabbMin0,aabbMax0);
				}
				btVector3 thresholdVec(resultOut->m_closestPointDistanceThreshold, resultOut->m_closestPointDistanceThreshold, resultOut->m_closestPointDistanceThreshold);
				aabbMin0 -= thresholdVec;
				aabbMax0 += thresholdVec;
				{
					btTransform	orgInterpolationTrans1;
					const btCollisionShape* childShape1 = 0;
					btTransform	orgTrans1;
					btTransform	newChildWorldTrans1;

					childShape1 = compoundShape1->getChildShape(pairs[i].m_indexB);
					orgTrans1 = col1ObjWrap->getWorldTransform();
					orgInterpolationTrans1 = col1ObjWrap->getWorldTransform();
					const btTransform& childTrans1 = compoundShape1->getChildTransform(pairs[i].m_indexB);
					newChildWorldTrans1 = orgTrans1*childTrans1 ;
					childShape1->getAabb(newChildWorldTrans1,aabbMin1,aabbMax1);
				}
				
				aabbMin1 -= thresholdVec;
				aabbMax1 += thresholdVec;

				if (!TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1))
				{
					algo->~btCollisionAlgorithm();
					m_dispatcher->freeCollisionAlgorithm(algo);
					m_removePairs.push_back(btSimplePair(pairs[i].m_indexA,pairs[i].m_indexB));
				}
			}
		}
		for (int i=0;i<m_removePairs.size();i++)
		{
			m_childCollisionAlgorithmCache->removeOverlappingPair(m_removePairs[i].m_indexA,m_removePairs[i].m_indexB);
		}
		m_removePairs.clear();
	}

}

btScalar	btCompoundCompoundCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
	btAssert(0);
	return 0.f;

}