summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletCollision/CollisionDispatch/btCompoundCollisionAlgorithm.cpp
blob: b5f4a3c869f2f632e8e700c4567681ea8775f82c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

*/

#include "BulletCollision/CollisionDispatch/btCompoundCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
#include "BulletCollision/BroadphaseCollision/btDbvt.h"
#include "LinearMath/btIDebugDraw.h"
#include "LinearMath/btAabbUtil2.h"
#include "btManifoldResult.h"
#include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"

btShapePairCallback gCompoundChildShapePairCallback = 0;

btCompoundCollisionAlgorithm::btCompoundCollisionAlgorithm(const btCollisionAlgorithmConstructionInfo& ci, const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, bool isSwapped)
	: btActivatingCollisionAlgorithm(ci, body0Wrap, body1Wrap),
	  m_isSwapped(isSwapped),
	  m_sharedManifold(ci.m_manifold)
{
	m_ownsManifold = false;

	const btCollisionObjectWrapper* colObjWrap = m_isSwapped ? body1Wrap : body0Wrap;
	btAssert(colObjWrap->getCollisionShape()->isCompound());

	const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(colObjWrap->getCollisionShape());
	m_compoundShapeRevision = compoundShape->getUpdateRevision();

	preallocateChildAlgorithms(body0Wrap, body1Wrap);
}

void btCompoundCollisionAlgorithm::preallocateChildAlgorithms(const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap)
{
	const btCollisionObjectWrapper* colObjWrap = m_isSwapped ? body1Wrap : body0Wrap;
	const btCollisionObjectWrapper* otherObjWrap = m_isSwapped ? body0Wrap : body1Wrap;
	btAssert(colObjWrap->getCollisionShape()->isCompound());

	const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(colObjWrap->getCollisionShape());

	int numChildren = compoundShape->getNumChildShapes();
	int i;

	m_childCollisionAlgorithms.resize(numChildren);
	for (i = 0; i < numChildren; i++)
	{
		if (compoundShape->getDynamicAabbTree())
		{
			m_childCollisionAlgorithms[i] = 0;
		}
		else
		{
			const btCollisionShape* childShape = compoundShape->getChildShape(i);

			btCollisionObjectWrapper childWrap(colObjWrap, childShape, colObjWrap->getCollisionObject(), colObjWrap->getWorldTransform(), -1, i);  //wrong child trans, but unused (hopefully)
			m_childCollisionAlgorithms[i] = m_dispatcher->findAlgorithm(&childWrap, otherObjWrap, m_sharedManifold, BT_CONTACT_POINT_ALGORITHMS);

			btAlignedObjectArray<btCollisionAlgorithm*> m_childCollisionAlgorithmsContact;
			btAlignedObjectArray<btCollisionAlgorithm*> m_childCollisionAlgorithmsClosestPoints;
		}
	}
}

void btCompoundCollisionAlgorithm::removeChildAlgorithms()
{
	int numChildren = m_childCollisionAlgorithms.size();
	int i;
	for (i = 0; i < numChildren; i++)
	{
		if (m_childCollisionAlgorithms[i])
		{
			m_childCollisionAlgorithms[i]->~btCollisionAlgorithm();
			m_dispatcher->freeCollisionAlgorithm(m_childCollisionAlgorithms[i]);
		}
	}
}

btCompoundCollisionAlgorithm::~btCompoundCollisionAlgorithm()
{
	removeChildAlgorithms();
}

struct btCompoundLeafCallback : btDbvt::ICollide
{
public:
	const btCollisionObjectWrapper* m_compoundColObjWrap;
	const btCollisionObjectWrapper* m_otherObjWrap;
	btDispatcher* m_dispatcher;
	const btDispatcherInfo& m_dispatchInfo;
	btManifoldResult* m_resultOut;
	btCollisionAlgorithm** m_childCollisionAlgorithms;
	btPersistentManifold* m_sharedManifold;

	btCompoundLeafCallback(const btCollisionObjectWrapper* compoundObjWrap, const btCollisionObjectWrapper* otherObjWrap, btDispatcher* dispatcher, const btDispatcherInfo& dispatchInfo, btManifoldResult* resultOut, btCollisionAlgorithm** childCollisionAlgorithms, btPersistentManifold* sharedManifold)
		: m_compoundColObjWrap(compoundObjWrap), m_otherObjWrap(otherObjWrap), m_dispatcher(dispatcher), m_dispatchInfo(dispatchInfo), m_resultOut(resultOut), m_childCollisionAlgorithms(childCollisionAlgorithms), m_sharedManifold(sharedManifold)
	{
	}

	void ProcessChildShape(const btCollisionShape* childShape, int index)
	{
		btAssert(index >= 0);
		const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(m_compoundColObjWrap->getCollisionShape());
		btAssert(index < compoundShape->getNumChildShapes());

		if (gCompoundChildShapePairCallback)
		{
			if (!gCompoundChildShapePairCallback(m_otherObjWrap->getCollisionShape(), childShape))
				return;
		}

		//backup
		btTransform orgTrans = m_compoundColObjWrap->getWorldTransform();

		const btTransform& childTrans = compoundShape->getChildTransform(index);
		btTransform newChildWorldTrans = orgTrans * childTrans;

		//perform an AABB check first
		btVector3 aabbMin0, aabbMax0;
		childShape->getAabb(newChildWorldTrans, aabbMin0, aabbMax0);

		btVector3 extendAabb(m_resultOut->m_closestPointDistanceThreshold, m_resultOut->m_closestPointDistanceThreshold, m_resultOut->m_closestPointDistanceThreshold);
		aabbMin0 -= extendAabb;
		aabbMax0 += extendAabb;

		btVector3 aabbMin1, aabbMax1;
		m_otherObjWrap->getCollisionShape()->getAabb(m_otherObjWrap->getWorldTransform(), aabbMin1, aabbMax1);


		if (TestAabbAgainstAabb2(aabbMin0, aabbMax0, aabbMin1, aabbMax1))
		{
			btTransform preTransform = childTrans;
			if (this->m_compoundColObjWrap->m_preTransform)
			{
				preTransform = preTransform *(*(this->m_compoundColObjWrap->m_preTransform));
			}
			btCollisionObjectWrapper compoundWrap(this->m_compoundColObjWrap, childShape, m_compoundColObjWrap->getCollisionObject(), newChildWorldTrans, preTransform, -1, index);

			btCollisionAlgorithm* algo = 0;
			bool allocatedAlgorithm = false;

			if (m_resultOut->m_closestPointDistanceThreshold > 0)
			{
				algo = m_dispatcher->findAlgorithm(&compoundWrap, m_otherObjWrap, 0, BT_CLOSEST_POINT_ALGORITHMS);
				allocatedAlgorithm = true;
			}
			else
			{
				//the contactpoint is still projected back using the original inverted worldtrans
				if (!m_childCollisionAlgorithms[index])
				{
					m_childCollisionAlgorithms[index] = m_dispatcher->findAlgorithm(&compoundWrap, m_otherObjWrap, m_sharedManifold, BT_CONTACT_POINT_ALGORITHMS);
				}
				algo = m_childCollisionAlgorithms[index];
			}

			const btCollisionObjectWrapper* tmpWrap = 0;

			///detect swapping case
			if (m_resultOut->getBody0Internal() == m_compoundColObjWrap->getCollisionObject())
			{
				tmpWrap = m_resultOut->getBody0Wrap();
				m_resultOut->setBody0Wrap(&compoundWrap);
				m_resultOut->setShapeIdentifiersA(-1, index);
			}
			else
			{
				tmpWrap = m_resultOut->getBody1Wrap();
				m_resultOut->setBody1Wrap(&compoundWrap);
				m_resultOut->setShapeIdentifiersB(-1, index);
			}

			algo->processCollision(&compoundWrap, m_otherObjWrap, m_dispatchInfo, m_resultOut);

#if 0
			if (m_dispatchInfo.m_debugDraw && (m_dispatchInfo.m_debugDraw->getDebugMode() & btIDebugDraw::DBG_DrawAabb))
			{
				btVector3 worldAabbMin,worldAabbMax;
				m_dispatchInfo.m_debugDraw->drawAabb(aabbMin0,aabbMax0,btVector3(1,1,1));
				m_dispatchInfo.m_debugDraw->drawAabb(aabbMin1,aabbMax1,btVector3(1,1,1));
			}
#endif

			if (m_resultOut->getBody0Internal() == m_compoundColObjWrap->getCollisionObject())
			{
				m_resultOut->setBody0Wrap(tmpWrap);
			}
			else
			{
				m_resultOut->setBody1Wrap(tmpWrap);
			}
			if (allocatedAlgorithm)
			{
				algo->~btCollisionAlgorithm();
				m_dispatcher->freeCollisionAlgorithm(algo);
			}
		}
	}
	void Process(const btDbvtNode* leaf)
	{
		int index = leaf->dataAsInt;

		const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(m_compoundColObjWrap->getCollisionShape());
		const btCollisionShape* childShape = compoundShape->getChildShape(index);

#if 0
		if (m_dispatchInfo.m_debugDraw && (m_dispatchInfo.m_debugDraw->getDebugMode() & btIDebugDraw::DBG_DrawAabb))
		{
			btVector3 worldAabbMin,worldAabbMax;
			btTransform	orgTrans = m_compoundColObjWrap->getWorldTransform();
			btTransformAabb(leaf->volume.Mins(),leaf->volume.Maxs(),0.,orgTrans,worldAabbMin,worldAabbMax);
			m_dispatchInfo.m_debugDraw->drawAabb(worldAabbMin,worldAabbMax,btVector3(1,0,0));
		}
#endif

		ProcessChildShape(childShape, index);
	}
};

void btCompoundCollisionAlgorithm::processCollision(const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, const btDispatcherInfo& dispatchInfo, btManifoldResult* resultOut)
{
	const btCollisionObjectWrapper* colObjWrap = m_isSwapped ? body1Wrap : body0Wrap;
	const btCollisionObjectWrapper* otherObjWrap = m_isSwapped ? body0Wrap : body1Wrap;

	btAssert(colObjWrap->getCollisionShape()->isCompound());
	const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(colObjWrap->getCollisionShape());

	///btCompoundShape might have changed:
	////make sure the internal child collision algorithm caches are still valid
	if (compoundShape->getUpdateRevision() != m_compoundShapeRevision)
	{
		///clear and update all
		removeChildAlgorithms();

		preallocateChildAlgorithms(body0Wrap, body1Wrap);
		m_compoundShapeRevision = compoundShape->getUpdateRevision();
	}

	if (m_childCollisionAlgorithms.size() == 0)
		return;

	const btDbvt* tree = compoundShape->getDynamicAabbTree();
	//use a dynamic aabb tree to cull potential child-overlaps
	btCompoundLeafCallback callback(colObjWrap, otherObjWrap, m_dispatcher, dispatchInfo, resultOut, &m_childCollisionAlgorithms[0], m_sharedManifold);

	///we need to refresh all contact manifolds
	///note that we should actually recursively traverse all children, btCompoundShape can nested more then 1 level deep
	///so we should add a 'refreshManifolds' in the btCollisionAlgorithm
	{
		int i;
		manifoldArray.resize(0);
		for (i = 0; i < m_childCollisionAlgorithms.size(); i++)
		{
			if (m_childCollisionAlgorithms[i])
			{
				m_childCollisionAlgorithms[i]->getAllContactManifolds(manifoldArray);
				for (int m = 0; m < manifoldArray.size(); m++)
				{
					if (manifoldArray[m]->getNumContacts())
					{
						resultOut->setPersistentManifold(manifoldArray[m]);
						resultOut->refreshContactPoints();
						resultOut->setPersistentManifold(0);  //??necessary?
					}
				}
				manifoldArray.resize(0);
			}
		}
	}

	if (tree)
	{
		btVector3 localAabbMin, localAabbMax;
		btTransform otherInCompoundSpace;
		otherInCompoundSpace = colObjWrap->getWorldTransform().inverse() * otherObjWrap->getWorldTransform();
		otherObjWrap->getCollisionShape()->getAabb(otherInCompoundSpace, localAabbMin, localAabbMax);
		btVector3 extraExtends(resultOut->m_closestPointDistanceThreshold, resultOut->m_closestPointDistanceThreshold, resultOut->m_closestPointDistanceThreshold);
		localAabbMin -= extraExtends;
		localAabbMax += extraExtends;

		const ATTRIBUTE_ALIGNED16(btDbvtVolume) bounds = btDbvtVolume::FromMM(localAabbMin, localAabbMax);
		//process all children, that overlap with  the given AABB bounds
		tree->collideTVNoStackAlloc(tree->m_root, bounds, stack2, callback);
	}
	else
	{
		//iterate over all children, perform an AABB check inside ProcessChildShape
		int numChildren = m_childCollisionAlgorithms.size();
		int i;
		for (i = 0; i < numChildren; i++)
		{
			callback.ProcessChildShape(compoundShape->getChildShape(i), i);
		}
	}

	{
		//iterate over all children, perform an AABB check inside ProcessChildShape
		int numChildren = m_childCollisionAlgorithms.size();
		int i;
		manifoldArray.resize(0);
		const btCollisionShape* childShape = 0;
		btTransform orgTrans;

		btTransform newChildWorldTrans;
		btVector3 aabbMin0, aabbMax0, aabbMin1, aabbMax1;

		for (i = 0; i < numChildren; i++)
		{
			if (m_childCollisionAlgorithms[i])
			{
				childShape = compoundShape->getChildShape(i);
				//if not longer overlapping, remove the algorithm
				orgTrans = colObjWrap->getWorldTransform();

				const btTransform& childTrans = compoundShape->getChildTransform(i);
				newChildWorldTrans = orgTrans * childTrans;

				//perform an AABB check first
				childShape->getAabb(newChildWorldTrans, aabbMin0, aabbMax0);
				otherObjWrap->getCollisionShape()->getAabb(otherObjWrap->getWorldTransform(), aabbMin1, aabbMax1);

				if (!TestAabbAgainstAabb2(aabbMin0, aabbMax0, aabbMin1, aabbMax1))
				{
					m_childCollisionAlgorithms[i]->~btCollisionAlgorithm();
					m_dispatcher->freeCollisionAlgorithm(m_childCollisionAlgorithms[i]);
					m_childCollisionAlgorithms[i] = 0;
				}
			}
		}
	}
}

btScalar btCompoundCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* body0, btCollisionObject* body1, const btDispatcherInfo& dispatchInfo, btManifoldResult* resultOut)
{
	btAssert(0);
	//needs to be fixed, using btCollisionObjectWrapper and NOT modifying internal data structures
	btCollisionObject* colObj = m_isSwapped ? body1 : body0;
	btCollisionObject* otherObj = m_isSwapped ? body0 : body1;

	btAssert(colObj->getCollisionShape()->isCompound());

	btCompoundShape* compoundShape = static_cast<btCompoundShape*>(colObj->getCollisionShape());

	//We will use the OptimizedBVH, AABB tree to cull potential child-overlaps
	//If both proxies are Compound, we will deal with that directly, by performing sequential/parallel tree traversals
	//given Proxy0 and Proxy1, if both have a tree, Tree0 and Tree1, this means:
	//determine overlapping nodes of Proxy1 using Proxy0 AABB against Tree1
	//then use each overlapping node AABB against Tree0
	//and vise versa.

	btScalar hitFraction = btScalar(1.);

	int numChildren = m_childCollisionAlgorithms.size();
	int i;
	btTransform orgTrans;
	btScalar frac;
	for (i = 0; i < numChildren; i++)
	{
		//btCollisionShape* childShape = compoundShape->getChildShape(i);

		//backup
		orgTrans = colObj->getWorldTransform();

		const btTransform& childTrans = compoundShape->getChildTransform(i);
		//btTransform	newChildWorldTrans = orgTrans*childTrans ;
		colObj->setWorldTransform(orgTrans * childTrans);

		//btCollisionShape* tmpShape = colObj->getCollisionShape();
		//colObj->internalSetTemporaryCollisionShape( childShape );
		frac = m_childCollisionAlgorithms[i]->calculateTimeOfImpact(colObj, otherObj, dispatchInfo, resultOut);
		if (frac < hitFraction)
		{
			hitFraction = frac;
		}
		//revert back
		//colObj->internalSetTemporaryCollisionShape( tmpShape);
		colObj->setWorldTransform(orgTrans);
	}
	return hitFraction;
}