summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletCollision/CollisionDispatch/btBoxBoxDetector.cpp
blob: 202039956e76b7e05fb981452c6601b21b370ba3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
/*
 * Box-Box collision detection re-distributed under the ZLib license with permission from Russell L. Smith
 * Original version is from Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.
 * All rights reserved.  Email: russ@q12.org   Web: www.q12.org
 Bullet Continuous Collision Detection and Physics Library
 Bullet is Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

///ODE box-box collision detection is adapted to work with Bullet

#include "btBoxBoxDetector.h"
#include "BulletCollision/CollisionShapes/btBoxShape.h"

#include <float.h>
#include <string.h>

btBoxBoxDetector::btBoxBoxDetector(const btBoxShape* box1, const btBoxShape* box2)
	: m_box1(box1),
	  m_box2(box2)
{
}

// given two boxes (p1,R1,side1) and (p2,R2,side2), collide them together and
// generate contact points. this returns 0 if there is no contact otherwise
// it returns the number of contacts generated.
// `normal' returns the contact normal.
// `depth' returns the maximum penetration depth along that normal.
// `return_code' returns a number indicating the type of contact that was
// detected:
//        1,2,3 = box 2 intersects with a face of box 1
//        4,5,6 = box 1 intersects with a face of box 2
//        7..15 = edge-edge contact
// `maxc' is the maximum number of contacts allowed to be generated, i.e.
// the size of the `contact' array.
// `contact' and `skip' are the contact array information provided to the
// collision functions. this function only fills in the position and depth
// fields.
struct dContactGeom;
#define dDOTpq(a, b, p, q) ((a)[0] * (b)[0] + (a)[p] * (b)[q] + (a)[2 * (p)] * (b)[2 * (q)])
#define dInfinity FLT_MAX

/*PURE_INLINE btScalar dDOT   (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,1); }
PURE_INLINE btScalar dDOT13 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,3); }
PURE_INLINE btScalar dDOT31 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,3,1); }
PURE_INLINE btScalar dDOT33 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,3,3); }
*/
static btScalar dDOT(const btScalar* a, const btScalar* b) { return dDOTpq(a, b, 1, 1); }
static btScalar dDOT44(const btScalar* a, const btScalar* b) { return dDOTpq(a, b, 4, 4); }
static btScalar dDOT41(const btScalar* a, const btScalar* b) { return dDOTpq(a, b, 4, 1); }
static btScalar dDOT14(const btScalar* a, const btScalar* b) { return dDOTpq(a, b, 1, 4); }
#define dMULTIPLYOP1_331(A, op, B, C)   \
	{                                   \
		(A)[0] op dDOT41((B), (C));     \
		(A)[1] op dDOT41((B + 1), (C)); \
		(A)[2] op dDOT41((B + 2), (C)); \
	}

#define dMULTIPLYOP0_331(A, op, B, C) \
	{                                 \
		(A)[0] op dDOT((B), (C));     \
		(A)[1] op dDOT((B + 4), (C)); \
		(A)[2] op dDOT((B + 8), (C)); \
	}

#define dMULTIPLY1_331(A, B, C) dMULTIPLYOP1_331(A, =, B, C)
#define dMULTIPLY0_331(A, B, C) dMULTIPLYOP0_331(A, =, B, C)

typedef btScalar dMatrix3[4 * 3];

void dLineClosestApproach(const btVector3& pa, const btVector3& ua,
						  const btVector3& pb, const btVector3& ub,
						  btScalar* alpha, btScalar* beta);
void dLineClosestApproach(const btVector3& pa, const btVector3& ua,
						  const btVector3& pb, const btVector3& ub,
						  btScalar* alpha, btScalar* beta)
{
	btVector3 p;
	p[0] = pb[0] - pa[0];
	p[1] = pb[1] - pa[1];
	p[2] = pb[2] - pa[2];
	btScalar uaub = dDOT(ua, ub);
	btScalar q1 = dDOT(ua, p);
	btScalar q2 = -dDOT(ub, p);
	btScalar d = 1 - uaub * uaub;
	if (d <= btScalar(0.0001f))
	{
		// @@@ this needs to be made more robust
		*alpha = 0;
		*beta = 0;
	}
	else
	{
		d = 1.f / d;
		*alpha = (q1 + uaub * q2) * d;
		*beta = (uaub * q1 + q2) * d;
	}
}

// find all the intersection points between the 2D rectangle with vertices
// at (+/-h[0],+/-h[1]) and the 2D quadrilateral with vertices (p[0],p[1]),
// (p[2],p[3]),(p[4],p[5]),(p[6],p[7]).
//
// the intersection points are returned as x,y pairs in the 'ret' array.
// the number of intersection points is returned by the function (this will
// be in the range 0 to 8).

static int intersectRectQuad2(btScalar h[2], btScalar p[8], btScalar ret[16])
{
	// q (and r) contain nq (and nr) coordinate points for the current (and
	// chopped) polygons
	int nq = 4, nr = 0;
	btScalar buffer[16];
	btScalar* q = p;
	btScalar* r = ret;
	for (int dir = 0; dir <= 1; dir++)
	{
		// direction notation: xy[0] = x axis, xy[1] = y axis
		for (int sign = -1; sign <= 1; sign += 2)
		{
			// chop q along the line xy[dir] = sign*h[dir]
			btScalar* pq = q;
			btScalar* pr = r;
			nr = 0;
			for (int i = nq; i > 0; i--)
			{
				// go through all points in q and all lines between adjacent points
				if (sign * pq[dir] < h[dir])
				{
					// this point is inside the chopping line
					pr[0] = pq[0];
					pr[1] = pq[1];
					pr += 2;
					nr++;
					if (nr & 8)
					{
						q = r;
						goto done;
					}
				}
				btScalar* nextq = (i > 1) ? pq + 2 : q;
				if ((sign * pq[dir] < h[dir]) ^ (sign * nextq[dir] < h[dir]))
				{
					// this line crosses the chopping line
					pr[1 - dir] = pq[1 - dir] + (nextq[1 - dir] - pq[1 - dir]) /
													(nextq[dir] - pq[dir]) * (sign * h[dir] - pq[dir]);
					pr[dir] = sign * h[dir];
					pr += 2;
					nr++;
					if (nr & 8)
					{
						q = r;
						goto done;
					}
				}
				pq += 2;
			}
			q = r;
			r = (q == ret) ? buffer : ret;
			nq = nr;
		}
	}
done:
	if (q != ret) memcpy(ret, q, nr * 2 * sizeof(btScalar));
	return nr;
}

#define M__PI 3.14159265f

// given n points in the plane (array p, of size 2*n), generate m points that
// best represent the whole set. the definition of 'best' here is not
// predetermined - the idea is to select points that give good box-box
// collision detection behavior. the chosen point indexes are returned in the
// array iret (of size m). 'i0' is always the first entry in the array.
// n must be in the range [1..8]. m must be in the range [1..n]. i0 must be
// in the range [0..n-1].

void cullPoints2(int n, btScalar p[], int m, int i0, int iret[]);
void cullPoints2(int n, btScalar p[], int m, int i0, int iret[])
{
	// compute the centroid of the polygon in cx,cy
	int i, j;
	btScalar a, cx, cy, q;
	if (n == 1)
	{
		cx = p[0];
		cy = p[1];
	}
	else if (n == 2)
	{
		cx = btScalar(0.5) * (p[0] + p[2]);
		cy = btScalar(0.5) * (p[1] + p[3]);
	}
	else
	{
		a = 0;
		cx = 0;
		cy = 0;
		for (i = 0; i < (n - 1); i++)
		{
			q = p[i * 2] * p[i * 2 + 3] - p[i * 2 + 2] * p[i * 2 + 1];
			a += q;
			cx += q * (p[i * 2] + p[i * 2 + 2]);
			cy += q * (p[i * 2 + 1] + p[i * 2 + 3]);
		}
		q = p[n * 2 - 2] * p[1] - p[0] * p[n * 2 - 1];
		if (btFabs(a + q) > SIMD_EPSILON)
		{
			a = 1.f / (btScalar(3.0) * (a + q));
		}
		else
		{
			a = BT_LARGE_FLOAT;
		}
		cx = a * (cx + q * (p[n * 2 - 2] + p[0]));
		cy = a * (cy + q * (p[n * 2 - 1] + p[1]));
	}

	// compute the angle of each point w.r.t. the centroid
	btScalar A[8];
	for (i = 0; i < n; i++) A[i] = btAtan2(p[i * 2 + 1] - cy, p[i * 2] - cx);

	// search for points that have angles closest to A[i0] + i*(2*pi/m).
	int avail[8];
	for (i = 0; i < n; i++) avail[i] = 1;
	avail[i0] = 0;
	iret[0] = i0;
	iret++;
	for (j = 1; j < m; j++)
	{
		a = btScalar(j) * (2 * M__PI / m) + A[i0];
		if (a > M__PI) a -= 2 * M__PI;
		btScalar maxdiff = 1e9, diff;

		*iret = i0;  // iret is not allowed to keep this value, but it sometimes does, when diff=#QNAN0

		for (i = 0; i < n; i++)
		{
			if (avail[i])
			{
				diff = btFabs(A[i] - a);
				if (diff > M__PI) diff = 2 * M__PI - diff;
				if (diff < maxdiff)
				{
					maxdiff = diff;
					*iret = i;
				}
			}
		}
#if defined(DEBUG) || defined(_DEBUG)
		btAssert(*iret != i0);  // ensure iret got set
#endif
		avail[*iret] = 0;
		iret++;
	}
}

int dBoxBox2(const btVector3& p1, const dMatrix3 R1,
			 const btVector3& side1, const btVector3& p2,
			 const dMatrix3 R2, const btVector3& side2,
			 btVector3& normal, btScalar* depth, int* return_code,
			 int maxc, dContactGeom* /*contact*/, int /*skip*/, btDiscreteCollisionDetectorInterface::Result& output);
int dBoxBox2(const btVector3& p1, const dMatrix3 R1,
			 const btVector3& side1, const btVector3& p2,
			 const dMatrix3 R2, const btVector3& side2,
			 btVector3& normal, btScalar* depth, int* return_code,
			 int maxc, dContactGeom* /*contact*/, int /*skip*/, btDiscreteCollisionDetectorInterface::Result& output)
{
	const btScalar fudge_factor = btScalar(1.05);
	btVector3 p, pp, normalC(0.f, 0.f, 0.f);
	const btScalar* normalR = 0;
	btScalar A[3], B[3], R11, R12, R13, R21, R22, R23, R31, R32, R33,
		Q11, Q12, Q13, Q21, Q22, Q23, Q31, Q32, Q33, s, s2, l;
	int i, j, invert_normal, code;

	// get vector from centers of box 1 to box 2, relative to box 1
	p = p2 - p1;
	dMULTIPLY1_331(pp, R1, p);  // get pp = p relative to body 1

	// get side lengths / 2
	A[0] = side1[0] * btScalar(0.5);
	A[1] = side1[1] * btScalar(0.5);
	A[2] = side1[2] * btScalar(0.5);
	B[0] = side2[0] * btScalar(0.5);
	B[1] = side2[1] * btScalar(0.5);
	B[2] = side2[2] * btScalar(0.5);

	// Rij is R1'*R2, i.e. the relative rotation between R1 and R2
	R11 = dDOT44(R1 + 0, R2 + 0);
	R12 = dDOT44(R1 + 0, R2 + 1);
	R13 = dDOT44(R1 + 0, R2 + 2);
	R21 = dDOT44(R1 + 1, R2 + 0);
	R22 = dDOT44(R1 + 1, R2 + 1);
	R23 = dDOT44(R1 + 1, R2 + 2);
	R31 = dDOT44(R1 + 2, R2 + 0);
	R32 = dDOT44(R1 + 2, R2 + 1);
	R33 = dDOT44(R1 + 2, R2 + 2);

	Q11 = btFabs(R11);
	Q12 = btFabs(R12);
	Q13 = btFabs(R13);
	Q21 = btFabs(R21);
	Q22 = btFabs(R22);
	Q23 = btFabs(R23);
	Q31 = btFabs(R31);
	Q32 = btFabs(R32);
	Q33 = btFabs(R33);

	// for all 15 possible separating axes:
	//   * see if the axis separates the boxes. if so, return 0.
	//   * find the depth of the penetration along the separating axis (s2)
	//   * if this is the largest depth so far, record it.
	// the normal vector will be set to the separating axis with the smallest
	// depth. note: normalR is set to point to a column of R1 or R2 if that is
	// the smallest depth normal so far. otherwise normalR is 0 and normalC is
	// set to a vector relative to body 1. invert_normal is 1 if the sign of
	// the normal should be flipped.

#define TST(expr1, expr2, norm, cc)    \
	s2 = btFabs(expr1) - (expr2);      \
	if (s2 > 0) return 0;              \
	if (s2 > s)                        \
	{                                  \
		s = s2;                        \
		normalR = norm;                \
		invert_normal = ((expr1) < 0); \
		code = (cc);                   \
	}

	s = -dInfinity;
	invert_normal = 0;
	code = 0;

	// separating axis = u1,u2,u3
	TST(pp[0], (A[0] + B[0] * Q11 + B[1] * Q12 + B[2] * Q13), R1 + 0, 1);
	TST(pp[1], (A[1] + B[0] * Q21 + B[1] * Q22 + B[2] * Q23), R1 + 1, 2);
	TST(pp[2], (A[2] + B[0] * Q31 + B[1] * Q32 + B[2] * Q33), R1 + 2, 3);

	// separating axis = v1,v2,v3
	TST(dDOT41(R2 + 0, p), (A[0] * Q11 + A[1] * Q21 + A[2] * Q31 + B[0]), R2 + 0, 4);
	TST(dDOT41(R2 + 1, p), (A[0] * Q12 + A[1] * Q22 + A[2] * Q32 + B[1]), R2 + 1, 5);
	TST(dDOT41(R2 + 2, p), (A[0] * Q13 + A[1] * Q23 + A[2] * Q33 + B[2]), R2 + 2, 6);

	// note: cross product axes need to be scaled when s is computed.
	// normal (n1,n2,n3) is relative to box 1.
#undef TST
#define TST(expr1, expr2, n1, n2, n3, cc)                \
	s2 = btFabs(expr1) - (expr2);                        \
	if (s2 > SIMD_EPSILON) return 0;                     \
	l = btSqrt((n1) * (n1) + (n2) * (n2) + (n3) * (n3)); \
	if (l > SIMD_EPSILON)                                \
	{                                                    \
		s2 /= l;                                         \
		if (s2 * fudge_factor > s)                       \
		{                                                \
			s = s2;                                      \
			normalR = 0;                                 \
			normalC[0] = (n1) / l;                       \
			normalC[1] = (n2) / l;                       \
			normalC[2] = (n3) / l;                       \
			invert_normal = ((expr1) < 0);               \
			code = (cc);                                 \
		}                                                \
	}

	btScalar fudge2(1.0e-5f);

	Q11 += fudge2;
	Q12 += fudge2;
	Q13 += fudge2;

	Q21 += fudge2;
	Q22 += fudge2;
	Q23 += fudge2;

	Q31 += fudge2;
	Q32 += fudge2;
	Q33 += fudge2;

	// separating axis = u1 x (v1,v2,v3)
	TST(pp[2] * R21 - pp[1] * R31, (A[1] * Q31 + A[2] * Q21 + B[1] * Q13 + B[2] * Q12), 0, -R31, R21, 7);
	TST(pp[2] * R22 - pp[1] * R32, (A[1] * Q32 + A[2] * Q22 + B[0] * Q13 + B[2] * Q11), 0, -R32, R22, 8);
	TST(pp[2] * R23 - pp[1] * R33, (A[1] * Q33 + A[2] * Q23 + B[0] * Q12 + B[1] * Q11), 0, -R33, R23, 9);

	// separating axis = u2 x (v1,v2,v3)
	TST(pp[0] * R31 - pp[2] * R11, (A[0] * Q31 + A[2] * Q11 + B[1] * Q23 + B[2] * Q22), R31, 0, -R11, 10);
	TST(pp[0] * R32 - pp[2] * R12, (A[0] * Q32 + A[2] * Q12 + B[0] * Q23 + B[2] * Q21), R32, 0, -R12, 11);
	TST(pp[0] * R33 - pp[2] * R13, (A[0] * Q33 + A[2] * Q13 + B[0] * Q22 + B[1] * Q21), R33, 0, -R13, 12);

	// separating axis = u3 x (v1,v2,v3)
	TST(pp[1] * R11 - pp[0] * R21, (A[0] * Q21 + A[1] * Q11 + B[1] * Q33 + B[2] * Q32), -R21, R11, 0, 13);
	TST(pp[1] * R12 - pp[0] * R22, (A[0] * Q22 + A[1] * Q12 + B[0] * Q33 + B[2] * Q31), -R22, R12, 0, 14);
	TST(pp[1] * R13 - pp[0] * R23, (A[0] * Q23 + A[1] * Q13 + B[0] * Q32 + B[1] * Q31), -R23, R13, 0, 15);

#undef TST

	if (!code) return 0;

	// if we get to this point, the boxes interpenetrate. compute the normal
	// in global coordinates.
	if (normalR)
	{
		normal[0] = normalR[0];
		normal[1] = normalR[4];
		normal[2] = normalR[8];
	}
	else
	{
		dMULTIPLY0_331(normal, R1, normalC);
	}
	if (invert_normal)
	{
		normal[0] = -normal[0];
		normal[1] = -normal[1];
		normal[2] = -normal[2];
	}
	*depth = -s;

	// compute contact point(s)

	if (code > 6)
	{
		// an edge from box 1 touches an edge from box 2.
		// find a point pa on the intersecting edge of box 1
		btVector3 pa;
		btScalar sign;
		for (i = 0; i < 3; i++) pa[i] = p1[i];
		for (j = 0; j < 3; j++)
		{
			sign = (dDOT14(normal, R1 + j) > 0) ? btScalar(1.0) : btScalar(-1.0);
			for (i = 0; i < 3; i++) pa[i] += sign * A[j] * R1[i * 4 + j];
		}

		// find a point pb on the intersecting edge of box 2
		btVector3 pb;
		for (i = 0; i < 3; i++) pb[i] = p2[i];
		for (j = 0; j < 3; j++)
		{
			sign = (dDOT14(normal, R2 + j) > 0) ? btScalar(-1.0) : btScalar(1.0);
			for (i = 0; i < 3; i++) pb[i] += sign * B[j] * R2[i * 4 + j];
		}

		btScalar alpha, beta;
		btVector3 ua, ub;
		for (i = 0; i < 3; i++) ua[i] = R1[((code)-7) / 3 + i * 4];
		for (i = 0; i < 3; i++) ub[i] = R2[((code)-7) % 3 + i * 4];

		dLineClosestApproach(pa, ua, pb, ub, &alpha, &beta);
		for (i = 0; i < 3; i++) pa[i] += ua[i] * alpha;
		for (i = 0; i < 3; i++) pb[i] += ub[i] * beta;

		{
			//contact[0].pos[i] = btScalar(0.5)*(pa[i]+pb[i]);
			//contact[0].depth = *depth;
			btVector3 pointInWorld;

#ifdef USE_CENTER_POINT
			for (i = 0; i < 3; i++)
				pointInWorld[i] = (pa[i] + pb[i]) * btScalar(0.5);
			output.addContactPoint(-normal, pointInWorld, -*depth);
#else
			output.addContactPoint(-normal, pb, -*depth);

#endif  //
			*return_code = code;
		}
		return 1;
	}

	// okay, we have a face-something intersection (because the separating
	// axis is perpendicular to a face). define face 'a' to be the reference
	// face (i.e. the normal vector is perpendicular to this) and face 'b' to be
	// the incident face (the closest face of the other box).

	const btScalar *Ra, *Rb, *pa, *pb, *Sa, *Sb;
	if (code <= 3)
	{
		Ra = R1;
		Rb = R2;
		pa = p1;
		pb = p2;
		Sa = A;
		Sb = B;
	}
	else
	{
		Ra = R2;
		Rb = R1;
		pa = p2;
		pb = p1;
		Sa = B;
		Sb = A;
	}

	// nr = normal vector of reference face dotted with axes of incident box.
	// anr = absolute values of nr.
	btVector3 normal2, nr, anr;
	if (code <= 3)
	{
		normal2[0] = normal[0];
		normal2[1] = normal[1];
		normal2[2] = normal[2];
	}
	else
	{
		normal2[0] = -normal[0];
		normal2[1] = -normal[1];
		normal2[2] = -normal[2];
	}
	dMULTIPLY1_331(nr, Rb, normal2);
	anr[0] = btFabs(nr[0]);
	anr[1] = btFabs(nr[1]);
	anr[2] = btFabs(nr[2]);

	// find the largest compontent of anr: this corresponds to the normal
	// for the indident face. the other axis numbers of the indicent face
	// are stored in a1,a2.
	int lanr, a1, a2;
	if (anr[1] > anr[0])
	{
		if (anr[1] > anr[2])
		{
			a1 = 0;
			lanr = 1;
			a2 = 2;
		}
		else
		{
			a1 = 0;
			a2 = 1;
			lanr = 2;
		}
	}
	else
	{
		if (anr[0] > anr[2])
		{
			lanr = 0;
			a1 = 1;
			a2 = 2;
		}
		else
		{
			a1 = 0;
			a2 = 1;
			lanr = 2;
		}
	}

	// compute center point of incident face, in reference-face coordinates
	btVector3 center;
	if (nr[lanr] < 0)
	{
		for (i = 0; i < 3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i * 4 + lanr];
	}
	else
	{
		for (i = 0; i < 3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i * 4 + lanr];
	}

	// find the normal and non-normal axis numbers of the reference box
	int codeN, code1, code2;
	if (code <= 3)
		codeN = code - 1;
	else
		codeN = code - 4;
	if (codeN == 0)
	{
		code1 = 1;
		code2 = 2;
	}
	else if (codeN == 1)
	{
		code1 = 0;
		code2 = 2;
	}
	else
	{
		code1 = 0;
		code2 = 1;
	}

	// find the four corners of the incident face, in reference-face coordinates
	btScalar quad[8];  // 2D coordinate of incident face (x,y pairs)
	btScalar c1, c2, m11, m12, m21, m22;
	c1 = dDOT14(center, Ra + code1);
	c2 = dDOT14(center, Ra + code2);
	// optimize this? - we have already computed this data above, but it is not
	// stored in an easy-to-index format. for now it's quicker just to recompute
	// the four dot products.
	m11 = dDOT44(Ra + code1, Rb + a1);
	m12 = dDOT44(Ra + code1, Rb + a2);
	m21 = dDOT44(Ra + code2, Rb + a1);
	m22 = dDOT44(Ra + code2, Rb + a2);
	{
		btScalar k1 = m11 * Sb[a1];
		btScalar k2 = m21 * Sb[a1];
		btScalar k3 = m12 * Sb[a2];
		btScalar k4 = m22 * Sb[a2];
		quad[0] = c1 - k1 - k3;
		quad[1] = c2 - k2 - k4;
		quad[2] = c1 - k1 + k3;
		quad[3] = c2 - k2 + k4;
		quad[4] = c1 + k1 + k3;
		quad[5] = c2 + k2 + k4;
		quad[6] = c1 + k1 - k3;
		quad[7] = c2 + k2 - k4;
	}

	// find the size of the reference face
	btScalar rect[2];
	rect[0] = Sa[code1];
	rect[1] = Sa[code2];

	// intersect the incident and reference faces
	btScalar ret[16];
	int n = intersectRectQuad2(rect, quad, ret);
	if (n < 1) return 0;  // this should never happen

	// convert the intersection points into reference-face coordinates,
	// and compute the contact position and depth for each point. only keep
	// those points that have a positive (penetrating) depth. delete points in
	// the 'ret' array as necessary so that 'point' and 'ret' correspond.
	btScalar point[3 * 8];  // penetrating contact points
	btScalar dep[8];        // depths for those points
	btScalar det1 = 1.f / (m11 * m22 - m12 * m21);
	m11 *= det1;
	m12 *= det1;
	m21 *= det1;
	m22 *= det1;
	int cnum = 0;  // number of penetrating contact points found
	for (j = 0; j < n; j++)
	{
		btScalar k1 = m22 * (ret[j * 2] - c1) - m12 * (ret[j * 2 + 1] - c2);
		btScalar k2 = -m21 * (ret[j * 2] - c1) + m11 * (ret[j * 2 + 1] - c2);
		for (i = 0; i < 3; i++) point[cnum * 3 + i] =
									center[i] + k1 * Rb[i * 4 + a1] + k2 * Rb[i * 4 + a2];
		dep[cnum] = Sa[codeN] - dDOT(normal2, point + cnum * 3);
		if (dep[cnum] >= 0)
		{
			ret[cnum * 2] = ret[j * 2];
			ret[cnum * 2 + 1] = ret[j * 2 + 1];
			cnum++;
		}
	}
	if (cnum < 1) return 0;  // this should never happen

	// we can't generate more contacts than we actually have
	if (maxc > cnum) maxc = cnum;
	if (maxc < 1) maxc = 1;

	if (cnum <= maxc)
	{
		if (code < 4)
		{
			// we have less contacts than we need, so we use them all
			for (j = 0; j < cnum; j++)
			{
				btVector3 pointInWorld;
				for (i = 0; i < 3; i++)
					pointInWorld[i] = point[j * 3 + i] + pa[i];
				output.addContactPoint(-normal, pointInWorld, -dep[j]);
			}
		}
		else
		{
			// we have less contacts than we need, so we use them all
			for (j = 0; j < cnum; j++)
			{
				btVector3 pointInWorld;
				for (i = 0; i < 3; i++)
					pointInWorld[i] = point[j * 3 + i] + pa[i] - normal[i] * dep[j];
				//pointInWorld[i] = point[j*3+i] + pa[i];
				output.addContactPoint(-normal, pointInWorld, -dep[j]);
			}
		}
	}
	else
	{
		// we have more contacts than are wanted, some of them must be culled.
		// find the deepest point, it is always the first contact.
		int i1 = 0;
		btScalar maxdepth = dep[0];
		for (i = 1; i < cnum; i++)
		{
			if (dep[i] > maxdepth)
			{
				maxdepth = dep[i];
				i1 = i;
			}
		}

		int iret[8];
		cullPoints2(cnum, ret, maxc, i1, iret);

		for (j = 0; j < maxc; j++)
		{
			//      dContactGeom *con = CONTACT(contact,skip*j);
			//    for (i=0; i<3; i++) con->pos[i] = point[iret[j]*3+i] + pa[i];
			//  con->depth = dep[iret[j]];

			btVector3 posInWorld;
			for (i = 0; i < 3; i++)
				posInWorld[i] = point[iret[j] * 3 + i] + pa[i];
			if (code < 4)
			{
				output.addContactPoint(-normal, posInWorld, -dep[iret[j]]);
			}
			else
			{
				output.addContactPoint(-normal, posInWorld - normal * dep[iret[j]], -dep[iret[j]]);
			}
		}
		cnum = maxc;
	}

	*return_code = code;
	return cnum;
}

void btBoxBoxDetector::getClosestPoints(const ClosestPointInput& input, Result& output, class btIDebugDraw* /*debugDraw*/, bool /*swapResults*/)
{
	const btTransform& transformA = input.m_transformA;
	const btTransform& transformB = input.m_transformB;

	int skip = 0;
	dContactGeom* contact = 0;

	dMatrix3 R1;
	dMatrix3 R2;

	for (int j = 0; j < 3; j++)
	{
		R1[0 + 4 * j] = transformA.getBasis()[j].x();
		R2[0 + 4 * j] = transformB.getBasis()[j].x();

		R1[1 + 4 * j] = transformA.getBasis()[j].y();
		R2[1 + 4 * j] = transformB.getBasis()[j].y();

		R1[2 + 4 * j] = transformA.getBasis()[j].z();
		R2[2 + 4 * j] = transformB.getBasis()[j].z();
	}

	btVector3 normal;
	btScalar depth;
	int return_code;
	int maxc = 4;

	dBoxBox2(transformA.getOrigin(),
			 R1,
			 2.f * m_box1->getHalfExtentsWithMargin(),
			 transformB.getOrigin(),
			 R2,
			 2.f * m_box2->getHalfExtentsWithMargin(),
			 normal, &depth, &return_code,
			 maxc, contact, skip,
			 output);
}