summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/Bullet3OpenCL/RigidBody/b3Solver.cpp
blob: 20bf6d47c5efc070b42e13c78a18a80201b03c12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
/*
Copyright (c) 2012 Advanced Micro Devices, Inc.  

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
//Originally written by Takahiro Harada


#include "b3Solver.h"

///useNewBatchingKernel  is a rewritten kernel using just a single thread of the warp, for experiments
bool useNewBatchingKernel = true;
bool gConvertConstraintOnCpu = false;

#define B3_SOLVER_SETUP_KERNEL_PATH "src/Bullet3OpenCL/RigidBody/kernels/solverSetup.cl"
#define B3_SOLVER_SETUP2_KERNEL_PATH "src/Bullet3OpenCL/RigidBody/kernels/solverSetup2.cl"
#define B3_SOLVER_CONTACT_KERNEL_PATH "src/Bullet3OpenCL/RigidBody/kernels/solveContact.cl"
#define B3_SOLVER_FRICTION_KERNEL_PATH "src/Bullet3OpenCL/RigidBody/kernels/solveFriction.cl"
#define B3_BATCHING_PATH "src/Bullet3OpenCL/RigidBody/kernels/batchingKernels.cl"
#define B3_BATCHING_NEW_PATH "src/Bullet3OpenCL/RigidBody/kernels/batchingKernelsNew.cl"

#include "Bullet3Dynamics/shared/b3ConvertConstraint4.h"

#include "kernels/solverSetup.h"
#include "kernels/solverSetup2.h"

#include "kernels/solveContact.h"
#include "kernels/solveFriction.h"

#include "kernels/batchingKernels.h"
#include "kernels/batchingKernelsNew.h"


#include "Bullet3OpenCL/ParallelPrimitives/b3LauncherCL.h"
#include "Bullet3Common/b3Vector3.h"

struct SolverDebugInfo
{
	int m_valInt0;
	int m_valInt1;
	int m_valInt2;
	int m_valInt3;
	
	int m_valInt4;
	int m_valInt5;
	int m_valInt6;
	int m_valInt7;

	int m_valInt8;
	int m_valInt9;
	int m_valInt10;
	int m_valInt11;

	int	m_valInt12;
	int	m_valInt13;
	int	m_valInt14;
	int	m_valInt15;


	float m_val0;
	float m_val1;
	float m_val2;
	float m_val3;
};




class SolverDeviceInl
{
public:
	struct ParallelSolveData
	{
		b3OpenCLArray<unsigned int>* m_numConstraints;
		b3OpenCLArray<unsigned int>* m_offsets;
	};
};



b3Solver::b3Solver(cl_context ctx, cl_device_id device, cl_command_queue queue, int pairCapacity)
			:
			m_context(ctx),
			m_device(device),
			m_queue(queue),
			m_batchSizes(ctx,queue),
			m_nIterations(4)
{
	m_sort32 = new b3RadixSort32CL(ctx,device,queue);
	m_scan = new b3PrefixScanCL(ctx,device,queue,B3_SOLVER_N_CELLS);
	m_search = new b3BoundSearchCL(ctx,device,queue,B3_SOLVER_N_CELLS);

	const int sortSize = B3NEXTMULTIPLEOF( pairCapacity, 512 );

	m_sortDataBuffer = new b3OpenCLArray<b3SortData>(ctx,queue,sortSize);
	m_contactBuffer2 = new b3OpenCLArray<b3Contact4>(ctx,queue);

	m_numConstraints = new b3OpenCLArray<unsigned int>(ctx,queue,B3_SOLVER_N_CELLS );
	m_numConstraints->resize(B3_SOLVER_N_CELLS);

	m_offsets = new b3OpenCLArray<unsigned int>( ctx,queue,B3_SOLVER_N_CELLS);
	m_offsets->resize(B3_SOLVER_N_CELLS);
	const char* additionalMacros = "";
//	const char* srcFileNameForCaching="";



	cl_int pErrNum;
	const char* batchKernelSource = batchingKernelsCL;
	const char* batchKernelNewSource = batchingKernelsNewCL;
	
	const char* solverSetupSource = solverSetupCL;
	const char* solverSetup2Source = solverSetup2CL;
	const char* solveContactSource = solveContactCL;
	const char* solveFrictionSource = solveFrictionCL;
	
	
	
	{
		
		cl_program solveContactProg= b3OpenCLUtils::compileCLProgramFromString( ctx, device, solveContactSource, &pErrNum,additionalMacros, B3_SOLVER_CONTACT_KERNEL_PATH);
		b3Assert(solveContactProg);
		
		cl_program solveFrictionProg= b3OpenCLUtils::compileCLProgramFromString( ctx, device, solveFrictionSource, &pErrNum,additionalMacros, B3_SOLVER_FRICTION_KERNEL_PATH);
		b3Assert(solveFrictionProg);

		cl_program solverSetup2Prog= b3OpenCLUtils::compileCLProgramFromString( ctx, device, solverSetup2Source, &pErrNum,additionalMacros, B3_SOLVER_SETUP2_KERNEL_PATH);
		b3Assert(solverSetup2Prog);

		
		cl_program solverSetupProg= b3OpenCLUtils::compileCLProgramFromString( ctx, device, solverSetupSource, &pErrNum,additionalMacros, B3_SOLVER_SETUP_KERNEL_PATH);
		b3Assert(solverSetupProg);
		
		
		m_solveFrictionKernel= b3OpenCLUtils::compileCLKernelFromString( ctx, device, solveFrictionSource, "BatchSolveKernelFriction", &pErrNum, solveFrictionProg,additionalMacros );
		b3Assert(m_solveFrictionKernel);

		m_solveContactKernel= b3OpenCLUtils::compileCLKernelFromString( ctx, device, solveContactSource, "BatchSolveKernelContact", &pErrNum, solveContactProg,additionalMacros );
		b3Assert(m_solveContactKernel);
		
		m_contactToConstraintKernel = b3OpenCLUtils::compileCLKernelFromString( ctx, device, solverSetupSource, "ContactToConstraintKernel", &pErrNum, solverSetupProg,additionalMacros );
		b3Assert(m_contactToConstraintKernel);
			
		m_setSortDataKernel =  b3OpenCLUtils::compileCLKernelFromString( ctx, device, solverSetup2Source, "SetSortDataKernel", &pErrNum, solverSetup2Prog,additionalMacros );
		b3Assert(m_setSortDataKernel);
				
		m_reorderContactKernel = b3OpenCLUtils::compileCLKernelFromString( ctx, device, solverSetup2Source, "ReorderContactKernel", &pErrNum, solverSetup2Prog,additionalMacros );
		b3Assert(m_reorderContactKernel);
		

		m_copyConstraintKernel = b3OpenCLUtils::compileCLKernelFromString( ctx, device, solverSetup2Source, "CopyConstraintKernel", &pErrNum, solverSetup2Prog,additionalMacros );
		b3Assert(m_copyConstraintKernel);
		
	}

	{
		cl_program batchingProg = b3OpenCLUtils::compileCLProgramFromString( ctx, device, batchKernelSource, &pErrNum,additionalMacros, B3_BATCHING_PATH);
		//cl_program batchingProg = b3OpenCLUtils::compileCLProgramFromString( ctx, device, 0, &pErrNum,additionalMacros, B3_BATCHING_PATH,true);
		b3Assert(batchingProg);
		
		m_batchingKernel = b3OpenCLUtils::compileCLKernelFromString( ctx, device, batchKernelSource, "CreateBatches", &pErrNum, batchingProg,additionalMacros );
		b3Assert(m_batchingKernel);
	}
	{
		cl_program batchingNewProg = b3OpenCLUtils::compileCLProgramFromString( ctx, device, batchKernelNewSource, &pErrNum,additionalMacros, B3_BATCHING_NEW_PATH);
		b3Assert(batchingNewProg);

		m_batchingKernelNew = b3OpenCLUtils::compileCLKernelFromString( ctx, device, batchKernelNewSource, "CreateBatchesNew", &pErrNum, batchingNewProg,additionalMacros );
		//m_batchingKernelNew = b3OpenCLUtils::compileCLKernelFromString( ctx, device, batchKernelNewSource, "CreateBatchesBruteForce", &pErrNum, batchingNewProg,additionalMacros );
		b3Assert(m_batchingKernelNew);
	}
}
		
b3Solver::~b3Solver()
{
	delete m_offsets;
	delete m_numConstraints;
	delete m_sortDataBuffer;
	delete m_contactBuffer2;

	delete m_sort32;
	delete m_scan;
	delete m_search;


	clReleaseKernel(m_batchingKernel);
	clReleaseKernel(m_batchingKernelNew);
	
	clReleaseKernel( m_solveContactKernel);
	clReleaseKernel( m_solveFrictionKernel);

	clReleaseKernel( m_contactToConstraintKernel);
	clReleaseKernel( m_setSortDataKernel);
	clReleaseKernel( m_reorderContactKernel);
	clReleaseKernel( m_copyConstraintKernel);
			
}


 

template<bool JACOBI>
static
__inline
void solveContact(b3GpuConstraint4& cs, 
	const b3Vector3& posA, b3Vector3& linVelA, b3Vector3& angVelA, float invMassA, const b3Matrix3x3& invInertiaA,
	const b3Vector3& posB, b3Vector3& linVelB, b3Vector3& angVelB, float invMassB, const b3Matrix3x3& invInertiaB, 
	float maxRambdaDt[4], float minRambdaDt[4])
{

	b3Vector3 dLinVelA; dLinVelA.setZero();
	b3Vector3 dAngVelA; dAngVelA.setZero();
	b3Vector3 dLinVelB; dLinVelB.setZero();
	b3Vector3 dAngVelB; dAngVelB.setZero();

	for(int ic=0; ic<4; ic++)
	{
		//	dont necessary because this makes change to 0
		if( cs.m_jacCoeffInv[ic] == 0.f ) continue;

		{
			b3Vector3 angular0, angular1, linear;
			b3Vector3 r0 = cs.m_worldPos[ic] - (b3Vector3&)posA;
			b3Vector3 r1 = cs.m_worldPos[ic] - (b3Vector3&)posB;
			setLinearAndAngular( (const b3Vector3 &)cs.m_linear, (const b3Vector3 &)r0, (const b3Vector3 &)r1, &linear, &angular0, &angular1 );

			float rambdaDt = calcRelVel((const b3Vector3 &)cs.m_linear,(const b3Vector3 &) -cs.m_linear, angular0, angular1,
				linVelA, angVelA, linVelB, angVelB ) + cs.m_b[ic];
			rambdaDt *= cs.m_jacCoeffInv[ic];

			{
				float prevSum = cs.m_appliedRambdaDt[ic];
				float updated = prevSum;
				updated += rambdaDt;
				updated = b3Max( updated, minRambdaDt[ic] );
				updated = b3Min( updated, maxRambdaDt[ic] );
				rambdaDt = updated - prevSum;
				cs.m_appliedRambdaDt[ic] = updated;
			}

			b3Vector3 linImp0 = invMassA*linear*rambdaDt;
			b3Vector3 linImp1 = invMassB*(-linear)*rambdaDt;
			b3Vector3 angImp0 = (invInertiaA* angular0)*rambdaDt;
			b3Vector3 angImp1 = (invInertiaB* angular1)*rambdaDt;
#ifdef _WIN32
            b3Assert(_finite(linImp0.getX()));
			b3Assert(_finite(linImp1.getX()));
#endif
			if( JACOBI )
			{
				dLinVelA += linImp0;
				dAngVelA += angImp0;
				dLinVelB += linImp1;
				dAngVelB += angImp1;
			}
			else
			{
				linVelA += linImp0;
				angVelA += angImp0;
				linVelB += linImp1;
				angVelB += angImp1;
			}
		}
	}

	if( JACOBI )
	{
		linVelA += dLinVelA;
		angVelA += dAngVelA;
		linVelB += dLinVelB;
		angVelB += dAngVelB;
	}

}





	static
	__inline
	void solveFriction(b3GpuConstraint4& cs, 
		const b3Vector3& posA, b3Vector3& linVelA, b3Vector3& angVelA, float invMassA, const b3Matrix3x3& invInertiaA,
		const b3Vector3& posB, b3Vector3& linVelB, b3Vector3& angVelB, float invMassB, const b3Matrix3x3& invInertiaB, 
		float maxRambdaDt[4], float minRambdaDt[4])
	{

		if( cs.m_fJacCoeffInv[0] == 0 && cs.m_fJacCoeffInv[0] == 0 ) return;
		const b3Vector3& center = (const b3Vector3&)cs.m_center;

		b3Vector3 n = -(const b3Vector3&)cs.m_linear;

		b3Vector3 tangent[2];
#if 1		
		b3PlaneSpace1 (n, tangent[0],tangent[1]);
#else
		b3Vector3 r = cs.m_worldPos[0]-center;
		tangent[0] = cross3( n, r );
		tangent[1] = cross3( tangent[0], n );
		tangent[0] = normalize3( tangent[0] );
		tangent[1] = normalize3( tangent[1] );
#endif

		b3Vector3 angular0, angular1, linear;
		b3Vector3 r0 = center - posA;
		b3Vector3 r1 = center - posB;
		for(int i=0; i<2; i++)
		{
			setLinearAndAngular( tangent[i], r0, r1, &linear, &angular0, &angular1 );
			float rambdaDt = calcRelVel(linear, -linear, angular0, angular1,
				linVelA, angVelA, linVelB, angVelB );
			rambdaDt *= cs.m_fJacCoeffInv[i];

				{
					float prevSum = cs.m_fAppliedRambdaDt[i];
					float updated = prevSum;
					updated += rambdaDt;
					updated = b3Max( updated, minRambdaDt[i] );
					updated = b3Min( updated, maxRambdaDt[i] );
					rambdaDt = updated - prevSum;
					cs.m_fAppliedRambdaDt[i] = updated;
				}

			b3Vector3 linImp0 = invMassA*linear*rambdaDt;
			b3Vector3 linImp1 = invMassB*(-linear)*rambdaDt;
			b3Vector3 angImp0 = (invInertiaA* angular0)*rambdaDt;
			b3Vector3 angImp1 = (invInertiaB* angular1)*rambdaDt;
#ifdef _WIN32
			b3Assert(_finite(linImp0.getX()));
			b3Assert(_finite(linImp1.getX()));
#endif
			linVelA += linImp0;
			angVelA += angImp0;
			linVelB += linImp1;
			angVelB += angImp1;
		}

		{	//	angular damping for point constraint
			b3Vector3 ab = ( posB - posA ).normalized();
			b3Vector3 ac = ( center - posA ).normalized();
			if( b3Dot( ab, ac ) > 0.95f || (invMassA == 0.f || invMassB == 0.f))
			{
				float angNA = b3Dot( n, angVelA );
				float angNB = b3Dot( n, angVelB );

				angVelA -= (angNA*0.1f)*n;
				angVelB -= (angNB*0.1f)*n;
			}
		}

	}
/*
 b3AlignedObjectArray<b3RigidBodyData>& m_bodies;
	b3AlignedObjectArray<b3InertiaData>& m_shapes;
	b3AlignedObjectArray<b3GpuConstraint4>& m_constraints;
	b3AlignedObjectArray<int>* m_batchSizes;
	int m_cellIndex;
	int m_curWgidx;
	int m_start;
	int m_nConstraints;
	bool m_solveFriction;
	int m_maxNumBatches;
 */

struct SolveTask// : public ThreadPool::Task
{
	SolveTask(b3AlignedObjectArray<b3RigidBodyData>& bodies,  b3AlignedObjectArray<b3InertiaData>& shapes, b3AlignedObjectArray<b3GpuConstraint4>& constraints,
		int start, int nConstraints,int maxNumBatches,b3AlignedObjectArray<int>* wgUsedBodies, int curWgidx, b3AlignedObjectArray<int>* batchSizes, int cellIndex)
		: m_bodies( bodies ), m_shapes( shapes ), 
		m_constraints( constraints ), 
		m_batchSizes(batchSizes),
		m_cellIndex(cellIndex),
		m_curWgidx(curWgidx),
		m_start( start ), 
		m_nConstraints( nConstraints ),
		m_solveFriction( true ),
		m_maxNumBatches(maxNumBatches)
	{}

	unsigned short int getType(){ return 0; }

	void run(int tIdx)
	{
		int offset = 0;
		for (int ii=0;ii<B3_MAX_NUM_BATCHES;ii++)
		{
			int numInBatch = m_batchSizes->at(m_cellIndex*B3_MAX_NUM_BATCHES+ii);
			if (!numInBatch)
				break;

			for (int jj=0;jj<numInBatch;jj++)
			{
				int i = m_start + offset+jj;
				int batchId = m_constraints[i].m_batchIdx;
				b3Assert(batchId==ii);
				float frictionCoeff = m_constraints[i].getFrictionCoeff();
				int aIdx = (int)m_constraints[i].m_bodyA;
				int bIdx = (int)m_constraints[i].m_bodyB;
//				int localBatch = m_constraints[i].m_batchIdx;
				b3RigidBodyData& bodyA = m_bodies[aIdx];
				b3RigidBodyData& bodyB = m_bodies[bIdx];

				if( !m_solveFriction )
				{
					float maxRambdaDt[4] = {FLT_MAX,FLT_MAX,FLT_MAX,FLT_MAX};
					float minRambdaDt[4] = {0.f,0.f,0.f,0.f};

					solveContact<false>( m_constraints[i], (b3Vector3&)bodyA.m_pos, (b3Vector3&)bodyA.m_linVel, (b3Vector3&)bodyA.m_angVel, bodyA.m_invMass, (const b3Matrix3x3 &)m_shapes[aIdx].m_invInertiaWorld, 
							(b3Vector3&)bodyB.m_pos, (b3Vector3&)bodyB.m_linVel, (b3Vector3&)bodyB.m_angVel, bodyB.m_invMass, (const b3Matrix3x3 &)m_shapes[bIdx].m_invInertiaWorld,
						maxRambdaDt, minRambdaDt );
				}
				else
				{
					float maxRambdaDt[4] = {FLT_MAX,FLT_MAX,FLT_MAX,FLT_MAX};
					float minRambdaDt[4] = {0.f,0.f,0.f,0.f};
					float sum = 0;
					for(int j=0; j<4; j++)
					{
						sum +=m_constraints[i].m_appliedRambdaDt[j];
					}
					frictionCoeff = 0.7f;
					for(int j=0; j<4; j++)
					{
						maxRambdaDt[j] = frictionCoeff*sum;
						minRambdaDt[j] = -maxRambdaDt[j];
					}
					solveFriction( m_constraints[i], (b3Vector3&)bodyA.m_pos, (b3Vector3&)bodyA.m_linVel, (b3Vector3&)bodyA.m_angVel, bodyA.m_invMass,(const b3Matrix3x3 &) m_shapes[aIdx].m_invInertiaWorld, 
						(b3Vector3&)bodyB.m_pos, (b3Vector3&)bodyB.m_linVel, (b3Vector3&)bodyB.m_angVel, bodyB.m_invMass,(const b3Matrix3x3 &) m_shapes[bIdx].m_invInertiaWorld,
						maxRambdaDt, minRambdaDt );
			
				}
			}
			offset+=numInBatch;


		}
/*		for (int bb=0;bb<m_maxNumBatches;bb++)
		{
			//for(int ic=m_nConstraints-1; ic>=0; ic--)
			for(int ic=0; ic<m_nConstraints; ic++)
			{
				
				int i = m_start + ic;
				if (m_constraints[i].m_batchIdx != bb)
					continue;

				float frictionCoeff = m_constraints[i].getFrictionCoeff();
				int aIdx = (int)m_constraints[i].m_bodyA;
				int bIdx = (int)m_constraints[i].m_bodyB;
				int localBatch = m_constraints[i].m_batchIdx;
				b3RigidBodyData& bodyA = m_bodies[aIdx];
				b3RigidBodyData& bodyB = m_bodies[bIdx];

				if( !m_solveFriction )
				{
					float maxRambdaDt[4] = {FLT_MAX,FLT_MAX,FLT_MAX,FLT_MAX};
					float minRambdaDt[4] = {0.f,0.f,0.f,0.f};

					solveContact<false>( m_constraints[i], (b3Vector3&)bodyA.m_pos, (b3Vector3&)bodyA.m_linVel, (b3Vector3&)bodyA.m_angVel, bodyA.m_invMass, (const b3Matrix3x3 &)m_shapes[aIdx].m_invInertiaWorld, 
							(b3Vector3&)bodyB.m_pos, (b3Vector3&)bodyB.m_linVel, (b3Vector3&)bodyB.m_angVel, bodyB.m_invMass, (const b3Matrix3x3 &)m_shapes[bIdx].m_invInertiaWorld,
						maxRambdaDt, minRambdaDt );
				}
				else
				{
					float maxRambdaDt[4] = {FLT_MAX,FLT_MAX,FLT_MAX,FLT_MAX};
					float minRambdaDt[4] = {0.f,0.f,0.f,0.f};
					float sum = 0;
					for(int j=0; j<4; j++)
					{
						sum +=m_constraints[i].m_appliedRambdaDt[j];
					}
					frictionCoeff = 0.7f;
					for(int j=0; j<4; j++)
					{
						maxRambdaDt[j] = frictionCoeff*sum;
						minRambdaDt[j] = -maxRambdaDt[j];
					}
					solveFriction( m_constraints[i], (b3Vector3&)bodyA.m_pos, (b3Vector3&)bodyA.m_linVel, (b3Vector3&)bodyA.m_angVel, bodyA.m_invMass,(const b3Matrix3x3 &) m_shapes[aIdx].m_invInertiaWorld, 
						(b3Vector3&)bodyB.m_pos, (b3Vector3&)bodyB.m_linVel, (b3Vector3&)bodyB.m_angVel, bodyB.m_invMass,(const b3Matrix3x3 &) m_shapes[bIdx].m_invInertiaWorld,
						maxRambdaDt, minRambdaDt );
			
				}
			}
		}
		*/


		
	}

	b3AlignedObjectArray<b3RigidBodyData>& m_bodies;
	b3AlignedObjectArray<b3InertiaData>& m_shapes;
	b3AlignedObjectArray<b3GpuConstraint4>& m_constraints;
	b3AlignedObjectArray<int>* m_batchSizes;
	int m_cellIndex;
	int m_curWgidx;
	int m_start;
	int m_nConstraints;
	bool m_solveFriction;
	int m_maxNumBatches;
};


void b3Solver::solveContactConstraintHost(  b3OpenCLArray<b3RigidBodyData>* bodyBuf, b3OpenCLArray<b3InertiaData>* shapeBuf, 
			b3OpenCLArray<b3GpuConstraint4>* constraint, void* additionalData, int n ,int maxNumBatches,b3AlignedObjectArray<int>* batchSizes)
{

#if 0
	{	
		int nSplitX = B3_SOLVER_N_SPLIT_X;
		int nSplitY = B3_SOLVER_N_SPLIT_Y;
		int numWorkgroups = B3_SOLVER_N_CELLS/B3_SOLVER_N_BATCHES;
		for (int z=0;z<4;z++)
		{
			for (int y=0;y<4;y++)
			{
				for (int x=0;x<4;x++)
				{
					int newIndex = (x+y*nSplitX+z*nSplitX*nSplitY);
				//	printf("newIndex=%d\n",newIndex);

					int zIdx = newIndex/(nSplitX*nSplitY);
					int remain = newIndex%(nSplitX*nSplitY);
					int yIdx = remain/nSplitX;
					int xIdx = remain%nSplitX;
				//	printf("newIndex=%d\n",newIndex);
				}
			}
		}

		//for (int wgIdx=numWorkgroups-1;wgIdx>=0;wgIdx--)
		for (int cellBatch=0;cellBatch<B3_SOLVER_N_BATCHES;cellBatch++)
		{
			for (int wgIdx=0;wgIdx<numWorkgroups;wgIdx++)
			{
				int zIdx = (wgIdx/((nSplitX*nSplitY)/4))*2+((cellBatch&4)>>2);
				int remain= (wgIdx%((nSplitX*nSplitY)/4));
				int yIdx = (remain/(nSplitX/2))*2 + ((cellBatch&2)>>1);
				int xIdx = (remain%(nSplitX/2))*2 + (cellBatch&1);
				
				/*int zIdx = newIndex/(nSplitX*nSplitY);
				int remain = newIndex%(nSplitX*nSplitY);
				int yIdx = remain/nSplitX;
				int xIdx = remain%nSplitX;
				*/
				int cellIdx = xIdx+yIdx*nSplitX+zIdx*(nSplitX*nSplitY);
			//	printf("wgIdx %d: xIdx=%d, yIdx=%d, zIdx=%d, cellIdx=%d, cell Batch %d\n",wgIdx,xIdx,yIdx,zIdx,cellIdx,cellBatch);
			}
		}
	}
#endif

	b3AlignedObjectArray<b3RigidBodyData> bodyNative;
	bodyBuf->copyToHost(bodyNative);
	b3AlignedObjectArray<b3InertiaData> shapeNative;
	shapeBuf->copyToHost(shapeNative);
	b3AlignedObjectArray<b3GpuConstraint4> constraintNative;
	constraint->copyToHost(constraintNative);

	b3AlignedObjectArray<unsigned int> numConstraintsHost;
	m_numConstraints->copyToHost(numConstraintsHost);

	//printf("------------------------\n");
	b3AlignedObjectArray<unsigned int> offsetsHost;
	m_offsets->copyToHost(offsetsHost);
	static int frame=0;
	bool useBatches=true;
	if (useBatches)
	{
		for(int iter=0; iter<m_nIterations; iter++)
		{
			for (int cellBatch=0;cellBatch<B3_SOLVER_N_BATCHES;cellBatch++)
			{
				
				int nSplitX = B3_SOLVER_N_SPLIT_X;
				int nSplitY = B3_SOLVER_N_SPLIT_Y;
				int numWorkgroups = B3_SOLVER_N_CELLS/B3_SOLVER_N_BATCHES;
				//printf("cell Batch %d\n",cellBatch);
				b3AlignedObjectArray<int> usedBodies[B3_SOLVER_N_CELLS];
				for (int i=0;i<B3_SOLVER_N_CELLS;i++)
				{
					usedBodies[i].resize(0);
				}

				


				//for (int wgIdx=numWorkgroups-1;wgIdx>=0;wgIdx--)
				for (int wgIdx=0;wgIdx<numWorkgroups;wgIdx++)
				{
					int zIdx = (wgIdx/((nSplitX*nSplitY)/4))*2+((cellBatch&4)>>2);
					int remain= (wgIdx%((nSplitX*nSplitY)/4));
					int yIdx = (remain/(nSplitX/2))*2 + ((cellBatch&2)>>1);
					int xIdx = (remain%(nSplitX/2))*2 + (cellBatch&1);
					int cellIdx = xIdx+yIdx*nSplitX+zIdx*(nSplitX*nSplitY);
					
	
					if( numConstraintsHost[cellIdx] == 0 ) 
						continue;

					//printf("wgIdx %d: xIdx=%d, yIdx=%d, zIdx=%d, cellIdx=%d, cell Batch %d\n",wgIdx,xIdx,yIdx,zIdx,cellIdx,cellBatch);
					//printf("cell %d has %d constraints\n", cellIdx,numConstraintsHost[cellIdx]);
					if (zIdx)
					{
					//printf("?\n");
					}

					if (iter==0)
					{
						//printf("frame=%d, Cell xIdx=%x, yIdx=%d ",frame, xIdx,yIdx);
						//printf("cellBatch=%d, wgIdx=%d, #constraints in cell=%d\n",cellBatch,wgIdx,numConstraintsHost[cellIdx]);
					}
					const int start = offsetsHost[cellIdx];
					int numConstraintsInCell = numConstraintsHost[cellIdx];
	//				const int end = start + numConstraintsInCell;

					SolveTask task( bodyNative, shapeNative, constraintNative, start, numConstraintsInCell ,maxNumBatches,usedBodies,wgIdx,batchSizes,cellIdx);
					task.m_solveFriction = false;
					task.run(0);
				
				}
			}
		}

		for(int iter=0; iter<m_nIterations; iter++)
		{
			for (int cellBatch=0;cellBatch<B3_SOLVER_N_BATCHES;cellBatch++)
			{
				int nSplitX = B3_SOLVER_N_SPLIT_X;
				int nSplitY = B3_SOLVER_N_SPLIT_Y;
				

				int numWorkgroups = B3_SOLVER_N_CELLS/B3_SOLVER_N_BATCHES;

				for (int wgIdx=0;wgIdx<numWorkgroups;wgIdx++)
				{
					int zIdx = (wgIdx/((nSplitX*nSplitY)/4))*2+((cellBatch&4)>>2);
					int remain= (wgIdx%((nSplitX*nSplitY)/4));
					int yIdx = (remain/(nSplitX/2))*2 + ((cellBatch&2)>>1);
					int xIdx = (remain%(nSplitX/2))*2 + (cellBatch&1);
					
					int cellIdx = xIdx+yIdx*nSplitX+zIdx*(nSplitX*nSplitY);
	
					if( numConstraintsHost[cellIdx] == 0 ) 
						continue;
	
					//printf("yIdx=%d\n",yIdx);
					
					const int start = offsetsHost[cellIdx];
					int numConstraintsInCell = numConstraintsHost[cellIdx];
	//				const int end = start + numConstraintsInCell;

					SolveTask task( bodyNative, shapeNative, constraintNative, start, numConstraintsInCell,maxNumBatches, 0,0,batchSizes,cellIdx);
					task.m_solveFriction = true;
					task.run(0);
					
				}
			}
		}


	} else
	{
		for(int iter=0; iter<m_nIterations; iter++)
		{
			SolveTask task( bodyNative, shapeNative, constraintNative, 0, n ,maxNumBatches,0,0,0,0);
			task.m_solveFriction = false;
			task.run(0);
		}

		for(int iter=0; iter<m_nIterations; iter++)
		{
			SolveTask task( bodyNative, shapeNative, constraintNative, 0, n ,maxNumBatches,0,0,0,0);
			task.m_solveFriction = true;
			task.run(0);
		}
	}

	bodyBuf->copyFromHost(bodyNative);
	shapeBuf->copyFromHost(shapeNative);
	constraint->copyFromHost(constraintNative);
	frame++;
	
}

void checkConstraintBatch(const b3OpenCLArray<b3RigidBodyData>* bodyBuf,
					const b3OpenCLArray<b3InertiaData>* shapeBuf,
					b3OpenCLArray<b3GpuConstraint4>* constraint, 
					b3OpenCLArray<unsigned int>* m_numConstraints,
					b3OpenCLArray<unsigned int>* m_offsets,
					int batchId
					)
{
//						b3BufferInfoCL( m_numConstraints->getBufferCL() ), 
//						b3BufferInfoCL( m_offsets->getBufferCL() ) 
	
	int cellBatch = batchId;
	const int nn = B3_SOLVER_N_CELLS;
//	int numWorkItems = 64*nn/B3_SOLVER_N_BATCHES;

	b3AlignedObjectArray<unsigned int> gN;
	m_numConstraints->copyToHost(gN);
	b3AlignedObjectArray<unsigned int> gOffsets;
	m_offsets->copyToHost(gOffsets);
	int nSplitX = B3_SOLVER_N_SPLIT_X;
	int nSplitY = B3_SOLVER_N_SPLIT_Y;
	
//	int bIdx = batchId;

	b3AlignedObjectArray<b3GpuConstraint4> cpuConstraints;
	constraint->copyToHost(cpuConstraints);

	printf("batch = %d\n", batchId);

	int numWorkgroups = nn/B3_SOLVER_N_BATCHES;
	b3AlignedObjectArray<int> usedBodies;


	for (int wgIdx=0;wgIdx<numWorkgroups;wgIdx++)
	{
		printf("wgIdx = %d           ", wgIdx);

		int zIdx = (wgIdx/((nSplitX*nSplitY))/2)*2+((cellBatch&4)>>2);					
		int remain = wgIdx%((nSplitX*nSplitY));
		int yIdx = (remain%(nSplitX/2))*2 + ((cellBatch&2)>>1);
		int xIdx = (remain/(nSplitX/2))*2 + (cellBatch&1);

		
		int cellIdx = xIdx+yIdx*nSplitX+zIdx*(nSplitX*nSplitY);
		printf("cellIdx=%d\n",cellIdx);
		if( gN[cellIdx] == 0 ) 
			continue;

		const int start = gOffsets[cellIdx];
		const int end = start + gN[cellIdx];

		for (int c=start;c<end;c++)
		{
			b3GpuConstraint4& constraint = cpuConstraints[c];
			//printf("constraint (%d,%d)\n", constraint.m_bodyA,constraint.m_bodyB);
			if (usedBodies.findLinearSearch(constraint.m_bodyA)< usedBodies.size())
			{
				printf("error?\n");
			}
			if (usedBodies.findLinearSearch(constraint.m_bodyB)< usedBodies.size())
			{
				printf("error?\n");
			}
		}

		for (int c=start;c<end;c++)
		{
			b3GpuConstraint4& constraint = cpuConstraints[c];
			usedBodies.push_back(constraint.m_bodyA);
			usedBodies.push_back(constraint.m_bodyB);
		}

	}
}

static bool verify=false;

void b3Solver::solveContactConstraint(  const b3OpenCLArray<b3RigidBodyData>* bodyBuf, const b3OpenCLArray<b3InertiaData>* shapeBuf, 
			b3OpenCLArray<b3GpuConstraint4>* constraint, void* additionalData, int n ,int maxNumBatches)
{
	
	
	b3Int4 cdata = b3MakeInt4( n, 0, 0, 0 );
	{
		
		const int nn = B3_SOLVER_N_CELLS;

		cdata.x = 0;
		cdata.y = maxNumBatches;//250;


		int numWorkItems = 64*nn/B3_SOLVER_N_BATCHES;
#ifdef DEBUG_ME
		SolverDebugInfo* debugInfo = new  SolverDebugInfo[numWorkItems];
		adl::b3OpenCLArray<SolverDebugInfo> gpuDebugInfo(data->m_device,numWorkItems);
#endif



		{

			B3_PROFILE("m_batchSolveKernel iterations");
			for(int iter=0; iter<m_nIterations; iter++)
			{
				for(int ib=0; ib<B3_SOLVER_N_BATCHES; ib++)
				{
					
					if (verify)
					{
						checkConstraintBatch(bodyBuf,shapeBuf,constraint,m_numConstraints,m_offsets,ib);
					}

#ifdef DEBUG_ME
					memset(debugInfo,0,sizeof(SolverDebugInfo)*numWorkItems);
					gpuDebugInfo.write(debugInfo,numWorkItems);
#endif


					cdata.z = ib;
					

				b3LauncherCL launcher( m_queue, m_solveContactKernel ,"m_solveContactKernel");
#if 1
                    
					b3BufferInfoCL bInfo[] = { 

						b3BufferInfoCL( bodyBuf->getBufferCL() ), 
						b3BufferInfoCL( shapeBuf->getBufferCL() ), 
						b3BufferInfoCL( constraint->getBufferCL() ),
						b3BufferInfoCL( m_numConstraints->getBufferCL() ), 
						b3BufferInfoCL( m_offsets->getBufferCL() ) 
#ifdef DEBUG_ME
						,	b3BufferInfoCL(&gpuDebugInfo)
#endif
						};

					

                    launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
					//launcher.setConst(  cdata.x );
                    launcher.setConst(  cdata.y );
                    launcher.setConst(  cdata.z );
                    b3Int4 nSplit;
					nSplit.x = B3_SOLVER_N_SPLIT_X;
					nSplit.y = B3_SOLVER_N_SPLIT_Y;
					nSplit.z = B3_SOLVER_N_SPLIT_Z;

                    launcher.setConst(  nSplit );
                    launcher.launch1D( numWorkItems, 64 );

                    
#else
                    const char* fileName = "m_batchSolveKernel.bin";
                    FILE* f = fopen(fileName,"rb");
                    if (f)
                    {
                        int sizeInBytes=0;
                        if (fseek(f, 0, SEEK_END) || (sizeInBytes = ftell(f)) == EOF || fseek(f, 0, SEEK_SET))
                        {
                            printf("error, cannot get file size\n");
                            exit(0);
                        }
                        
                        unsigned char* buf = (unsigned char*) malloc(sizeInBytes);
                        fread(buf,sizeInBytes,1,f);
                        int serializedBytes = launcher.deserializeArgs(buf, sizeInBytes,m_context);
                        int num = *(int*)&buf[serializedBytes];
                        
                        launcher.launch1D( num);

                        //this clFinish is for testing on errors
                        clFinish(m_queue);
                    }

#endif
					

#ifdef DEBUG_ME
					clFinish(m_queue);
					gpuDebugInfo.read(debugInfo,numWorkItems);
					clFinish(m_queue);
					for (int i=0;i<numWorkItems;i++)
					{
						if (debugInfo[i].m_valInt2>0)
						{
							printf("debugInfo[i].m_valInt2 = %d\n",i,debugInfo[i].m_valInt2);
						}

						if (debugInfo[i].m_valInt3>0)
						{
							printf("debugInfo[i].m_valInt3 = %d\n",i,debugInfo[i].m_valInt3);
						}
					}
#endif //DEBUG_ME


				}
			}
		
			clFinish(m_queue);


		}

		cdata.x = 1;
		bool applyFriction=true;
		if (applyFriction)
    	{
			B3_PROFILE("m_batchSolveKernel iterations2");
			for(int iter=0; iter<m_nIterations; iter++)
			{
				for(int ib=0; ib<B3_SOLVER_N_BATCHES; ib++)
				{
					cdata.z = ib;
					

					b3BufferInfoCL bInfo[] = { 
						b3BufferInfoCL( bodyBuf->getBufferCL() ), 
						b3BufferInfoCL( shapeBuf->getBufferCL() ), 
						b3BufferInfoCL( constraint->getBufferCL() ),
						b3BufferInfoCL( m_numConstraints->getBufferCL() ), 
						b3BufferInfoCL( m_offsets->getBufferCL() )
#ifdef DEBUG_ME
						,b3BufferInfoCL(&gpuDebugInfo)
#endif //DEBUG_ME
					};
					b3LauncherCL launcher( m_queue, m_solveFrictionKernel,"m_solveFrictionKernel" );
					launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
					//launcher.setConst(  cdata.x );
                    launcher.setConst(  cdata.y );
                    launcher.setConst(  cdata.z );
                    b3Int4 nSplit;
					nSplit.x = B3_SOLVER_N_SPLIT_X;
					nSplit.y = B3_SOLVER_N_SPLIT_Y;
					nSplit.z = B3_SOLVER_N_SPLIT_Z;

                    launcher.setConst(  nSplit );
                    
					launcher.launch1D( 64*nn/B3_SOLVER_N_BATCHES, 64 );
				}
			}
			clFinish(m_queue);
			
		}
#ifdef DEBUG_ME
		delete[] debugInfo;
#endif //DEBUG_ME
	}

	
}

void b3Solver::convertToConstraints( const b3OpenCLArray<b3RigidBodyData>* bodyBuf, 
	const b3OpenCLArray<b3InertiaData>* shapeBuf, 
	b3OpenCLArray<b3Contact4>* contactsIn, b3OpenCLArray<b3GpuConstraint4>* contactCOut, void* additionalData, 
	int nContacts, const ConstraintCfg& cfg )
{
//	b3OpenCLArray<b3GpuConstraint4>* constraintNative =0;
	contactCOut->resize(nContacts);
	struct CB
	{
		int m_nContacts;
		float m_dt;
		float m_positionDrift;
		float m_positionConstraintCoeff;
	};

	{

		CB cdata;
		cdata.m_nContacts = nContacts;
		cdata.m_dt = cfg.m_dt;
		cdata.m_positionDrift = cfg.m_positionDrift;
		cdata.m_positionConstraintCoeff = cfg.m_positionConstraintCoeff;

		
		if (gConvertConstraintOnCpu)
		{
			b3AlignedObjectArray<b3RigidBodyData> gBodies;
		bodyBuf->copyToHost(gBodies);

		b3AlignedObjectArray<b3Contact4> gContact;
		contactsIn->copyToHost(gContact);

		b3AlignedObjectArray<b3InertiaData> gShapes;
		shapeBuf->copyToHost(gShapes);
		
		b3AlignedObjectArray<b3GpuConstraint4> gConstraintOut;
		gConstraintOut.resize(nContacts);
		
			B3_PROFILE("cpu contactToConstraintKernel");
			for (int gIdx=0;gIdx<nContacts;gIdx++)
			{
				int aIdx = abs(gContact[gIdx].m_bodyAPtrAndSignBit);
				int bIdx = abs(gContact[gIdx].m_bodyBPtrAndSignBit);

				b3Float4 posA = gBodies[aIdx].m_pos;
				b3Float4 linVelA = gBodies[aIdx].m_linVel;
				b3Float4 angVelA = gBodies[aIdx].m_angVel;
				float invMassA = gBodies[aIdx].m_invMass;
				b3Mat3x3 invInertiaA = gShapes[aIdx].m_initInvInertia;

				b3Float4 posB = gBodies[bIdx].m_pos;
				b3Float4 linVelB = gBodies[bIdx].m_linVel;
				b3Float4 angVelB = gBodies[bIdx].m_angVel;
				float invMassB = gBodies[bIdx].m_invMass;
				b3Mat3x3 invInertiaB = gShapes[bIdx].m_initInvInertia;

				b3ContactConstraint4_t cs;

    			setConstraint4( posA, linVelA, angVelA, invMassA, invInertiaA, posB, linVelB, angVelB, invMassB, invInertiaB,
					&gContact[gIdx], cdata.m_dt, cdata.m_positionDrift, cdata.m_positionConstraintCoeff,
					&cs );
		
				cs.m_batchIdx = gContact[gIdx].m_batchIdx;

				gConstraintOut[gIdx] = (b3GpuConstraint4&)cs;
			}

			contactCOut->copyFromHost(gConstraintOut);

		} else
		{
			B3_PROFILE("gpu m_contactToConstraintKernel");

		
			b3BufferInfoCL bInfo[] = { b3BufferInfoCL( contactsIn->getBufferCL() ), b3BufferInfoCL( bodyBuf->getBufferCL() ), b3BufferInfoCL( shapeBuf->getBufferCL()),
				b3BufferInfoCL( contactCOut->getBufferCL() )};
			b3LauncherCL launcher( m_queue, m_contactToConstraintKernel,"m_contactToConstraintKernel" );
			launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
			//launcher.setConst(  cdata );
        
			launcher.setConst(cdata.m_nContacts);
			launcher.setConst(cdata.m_dt);
			launcher.setConst(cdata.m_positionDrift);
			launcher.setConst(cdata.m_positionConstraintCoeff);
        
			launcher.launch1D( nContacts, 64 );	
			clFinish(m_queue);

		}
	}

	
}

/*
void b3Solver::sortContacts(  const b3OpenCLArray<b3RigidBodyData>* bodyBuf, 
			b3OpenCLArray<b3Contact4>* contactsIn, void* additionalData, 
			int nContacts, const b3Solver::ConstraintCfg& cfg )
{
	
	

	const int sortAlignment = 512; // todo. get this out of sort
	if( cfg.m_enableParallelSolve )
	{
		

		int sortSize = NEXTMULTIPLEOF( nContacts, sortAlignment );

		b3OpenCLArray<unsigned int>* countsNative = m_numConstraints;//BufferUtils::map<TYPE_CL, false>( data->m_device, &countsHost );
		b3OpenCLArray<unsigned int>* offsetsNative = m_offsets;//BufferUtils::map<TYPE_CL, false>( data->m_device, &offsetsHost );

		{	//	2. set cell idx
			struct CB
			{
				int m_nContacts;
				int m_staticIdx;
				float m_scale;
				int m_nSplit;
			};

			b3Assert( sortSize%64 == 0 );
			CB cdata;
			cdata.m_nContacts = nContacts;
			cdata.m_staticIdx = cfg.m_staticIdx;
			cdata.m_scale = 1.f/(N_OBJ_PER_SPLIT*cfg.m_averageExtent);
			cdata.m_nSplit = B3_SOLVER_N_SPLIT;

			
			b3BufferInfoCL bInfo[] = { b3BufferInfoCL( contactsIn->getBufferCL() ), b3BufferInfoCL( bodyBuf->getBufferCL() ), b3BufferInfoCL( m_sortDataBuffer->getBufferCL() ) };
			b3LauncherCL launcher( m_queue, m_setSortDataKernel );
			launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
			launcher.setConst(  cdata );
			launcher.launch1D( sortSize, 64 );
		}

		{	//	3. sort by cell idx
			int n = B3_SOLVER_N_SPLIT*B3_SOLVER_N_SPLIT;
			int sortBit = 32;
			//if( n <= 0xffff ) sortBit = 16;
			//if( n <= 0xff ) sortBit = 8;
			m_sort32->execute(*m_sortDataBuffer,sortSize);
		}
		{	//	4. find entries
			m_search->execute( *m_sortDataBuffer, nContacts, *countsNative, B3_SOLVER_N_SPLIT*B3_SOLVER_N_SPLIT, b3BoundSearchCL::COUNT);

			m_scan->execute( *countsNative, *offsetsNative, B3_SOLVER_N_SPLIT*B3_SOLVER_N_SPLIT );
		}

		{	//	5. sort constraints by cellIdx
			//	todo. preallocate this
//			b3Assert( contactsIn->getType() == TYPE_HOST );
//			b3OpenCLArray<b3Contact4>* out = BufferUtils::map<TYPE_CL, false>( data->m_device, contactsIn );	//	copying contacts to this buffer

			{
				

				b3Int4 cdata; cdata.x = nContacts;
				b3BufferInfoCL bInfo[] = { b3BufferInfoCL( contactsIn->getBufferCL() ), b3BufferInfoCL( m_contactBuffer->getBufferCL() ), b3BufferInfoCL( m_sortDataBuffer->getBufferCL() ) };
				b3LauncherCL launcher( m_queue, m_reorderContactKernel );
				launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
				launcher.setConst(  cdata );
				launcher.launch1D( nContacts, 64 );
			}
//			BufferUtils::unmap<true>( out, contactsIn, nContacts );
		}
	}

	
}

*/
void	b3Solver::batchContacts(  b3OpenCLArray<b3Contact4>* contacts, int nContacts, b3OpenCLArray<unsigned int>* nNative, b3OpenCLArray<unsigned int>* offsetsNative, int staticIdx )
{
	
	int numWorkItems = 64*B3_SOLVER_N_CELLS;
	{
		B3_PROFILE("batch generation");
		
		b3Int4 cdata;
		cdata.x = nContacts;
		cdata.y = 0;
		cdata.z = staticIdx;

		
#ifdef BATCH_DEBUG
		SolverDebugInfo* debugInfo = new  SolverDebugInfo[numWorkItems];
		adl::b3OpenCLArray<SolverDebugInfo> gpuDebugInfo(data->m_device,numWorkItems);
		memset(debugInfo,0,sizeof(SolverDebugInfo)*numWorkItems);
		gpuDebugInfo.write(debugInfo,numWorkItems);
#endif

		

#if 0
		b3BufferInfoCL bInfo[] = { 
			b3BufferInfoCL( contacts->getBufferCL() ), 
			b3BufferInfoCL(  m_contactBuffer2->getBufferCL()),
			b3BufferInfoCL( nNative->getBufferCL() ), 
			b3BufferInfoCL( offsetsNative->getBufferCL() ),
#ifdef BATCH_DEBUG
			,	b3BufferInfoCL(&gpuDebugInfo)
#endif
		};
#endif
		
		

		{
			m_batchSizes.resize(nNative->size());
			B3_PROFILE("batchingKernel");
			//b3LauncherCL launcher( m_queue, m_batchingKernel);
			cl_kernel k = useNewBatchingKernel ? m_batchingKernelNew : m_batchingKernel;

			b3LauncherCL launcher( m_queue, k,"*batchingKernel");
			if (!useNewBatchingKernel )
			{
				launcher.setBuffer( contacts->getBufferCL() );
			}
			launcher.setBuffer( m_contactBuffer2->getBufferCL() );
			launcher.setBuffer( nNative->getBufferCL());
			launcher.setBuffer( offsetsNative->getBufferCL());
			
			launcher.setBuffer(m_batchSizes.getBufferCL());
			

			//launcher.setConst(  cdata );
            launcher.setConst(staticIdx);
            
			launcher.launch1D( numWorkItems, 64 );
			//clFinish(m_queue);
			//b3AlignedObjectArray<int> batchSizesCPU;
			//m_batchSizes.copyToHost(batchSizesCPU);
			//printf(".\n");
		}

#ifdef BATCH_DEBUG
	aaaa
		b3Contact4* hostContacts = new b3Contact4[nContacts];
		m_contactBuffer->read(hostContacts,nContacts);
		clFinish(m_queue);

		gpuDebugInfo.read(debugInfo,numWorkItems);
		clFinish(m_queue);

		for (int i=0;i<numWorkItems;i++)
		{
			if (debugInfo[i].m_valInt1>0)
			{
				printf("catch\n");
			}
			if (debugInfo[i].m_valInt2>0)
			{
				printf("catch22\n");
			}

			if (debugInfo[i].m_valInt3>0)
			{
				printf("catch666\n");
			}

			if (debugInfo[i].m_valInt4>0)
			{
				printf("catch777\n");
			}
		}
		delete[] debugInfo;
#endif //BATCH_DEBUG

	}

//	copy buffer to buffer
	//b3Assert(m_contactBuffer->size()==nContacts);
	//contacts->copyFromOpenCLArray( *m_contactBuffer);
	//clFinish(m_queue);//needed?
	
	
	
}