summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satConcave.cl
blob: 31ca43b8cd2af2dd6fcea3dbef9cbc0433fc0ee8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

//keep this enum in sync with the CPU version (in btCollidable.h)
//written by Erwin Coumans


#define SHAPE_CONVEX_HULL 3
#define SHAPE_CONCAVE_TRIMESH 5
#define TRIANGLE_NUM_CONVEX_FACES 5
#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6

#define B3_MAX_STACK_DEPTH 256


typedef unsigned int u32;

///keep this in sync with btCollidable.h
typedef struct
{
	union {
		int m_numChildShapes;
		int m_bvhIndex;
	};
	union
	{
		float m_radius;
		int	m_compoundBvhIndex;
	};
	
	int m_shapeType;
	int m_shapeIndex;
	
} btCollidableGpu;

#define MAX_NUM_PARTS_IN_BITS 10

///b3QuantizedBvhNode is a compressed aabb node, 16 bytes.
///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range).
typedef struct
{
	//12 bytes
	unsigned short int	m_quantizedAabbMin[3];
	unsigned short int	m_quantizedAabbMax[3];
	//4 bytes
	int	m_escapeIndexOrTriangleIndex;
} b3QuantizedBvhNode;

typedef struct
{
	float4		m_aabbMin;
	float4		m_aabbMax;
	float4		m_quantization;
	int			m_numNodes;
	int			m_numSubTrees;
	int			m_nodeOffset;
	int			m_subTreeOffset;

} b3BvhInfo;


int	getTriangleIndex(const b3QuantizedBvhNode* rootNode)
{
	unsigned int x=0;
	unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);
	// Get only the lower bits where the triangle index is stored
	return (rootNode->m_escapeIndexOrTriangleIndex&~(y));
}

int	getTriangleIndexGlobal(__global const b3QuantizedBvhNode* rootNode)
{
	unsigned int x=0;
	unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);
	// Get only the lower bits where the triangle index is stored
	return (rootNode->m_escapeIndexOrTriangleIndex&~(y));
}

int isLeafNode(const b3QuantizedBvhNode* rootNode)
{
	//skipindex is negative (internal node), triangleindex >=0 (leafnode)
	return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0;
}

int isLeafNodeGlobal(__global const b3QuantizedBvhNode* rootNode)
{
	//skipindex is negative (internal node), triangleindex >=0 (leafnode)
	return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0;
}
	
int getEscapeIndex(const b3QuantizedBvhNode* rootNode)
{
	return -rootNode->m_escapeIndexOrTriangleIndex;
}

int getEscapeIndexGlobal(__global const b3QuantizedBvhNode* rootNode)
{
	return -rootNode->m_escapeIndexOrTriangleIndex;
}


typedef struct
{
	//12 bytes
	unsigned short int	m_quantizedAabbMin[3];
	unsigned short int	m_quantizedAabbMax[3];
	//4 bytes, points to the root of the subtree
	int			m_rootNodeIndex;
	//4 bytes
	int			m_subtreeSize;
	int			m_padding[3];
} b3BvhSubtreeInfo;







typedef struct
{
	float4	m_childPosition;
	float4	m_childOrientation;
	int m_shapeIndex;
	int m_unused0;
	int m_unused1;
	int m_unused2;
} btGpuChildShape;


typedef struct
{
	float4 m_pos;
	float4 m_quat;
	float4 m_linVel;
	float4 m_angVel;

	u32 m_collidableIdx;
	float m_invMass;
	float m_restituitionCoeff;
	float m_frictionCoeff;
} BodyData;


typedef struct  
{
	float4		m_localCenter;
	float4		m_extents;
	float4		mC;
	float4		mE;
	
	float			m_radius;
	int	m_faceOffset;
	int m_numFaces;
	int	m_numVertices;

	int m_vertexOffset;
	int	m_uniqueEdgesOffset;
	int	m_numUniqueEdges;
	int m_unused;
} ConvexPolyhedronCL;

typedef struct 
{
	union
	{
		float4	m_min;
		float   m_minElems[4];
		int			m_minIndices[4];
	};
	union
	{
		float4	m_max;
		float   m_maxElems[4];
		int			m_maxIndices[4];
	};
} btAabbCL;

#include "Bullet3Collision/BroadPhaseCollision/shared/b3Aabb.h"
#include "Bullet3Common/shared/b3Int2.h"



typedef struct
{
	float4 m_plane;
	int m_indexOffset;
	int m_numIndices;
} btGpuFace;

#define make_float4 (float4)


__inline
float4 cross3(float4 a, float4 b)
{
	return cross(a,b);

	
//	float4 a1 = make_float4(a.xyz,0.f);
//	float4 b1 = make_float4(b.xyz,0.f);

//	return cross(a1,b1);

//float4 c = make_float4(a.y*b.z - a.z*b.y,a.z*b.x - a.x*b.z,a.x*b.y - a.y*b.x,0.f);
	
	//	float4 c = make_float4(a.y*b.z - a.z*b.y,1.f,a.x*b.y - a.y*b.x,0.f);
	
	//return c;
}

__inline
float dot3F4(float4 a, float4 b)
{
	float4 a1 = make_float4(a.xyz,0.f);
	float4 b1 = make_float4(b.xyz,0.f);
	return dot(a1, b1);
}

__inline
float4 fastNormalize4(float4 v)
{
	v = make_float4(v.xyz,0.f);
	return fast_normalize(v);
}


///////////////////////////////////////
//	Quaternion
///////////////////////////////////////

typedef float4 Quaternion;

__inline
Quaternion qtMul(Quaternion a, Quaternion b);

__inline
Quaternion qtNormalize(Quaternion in);

__inline
float4 qtRotate(Quaternion q, float4 vec);

__inline
Quaternion qtInvert(Quaternion q);




__inline
Quaternion qtMul(Quaternion a, Quaternion b)
{
	Quaternion ans;
	ans = cross3( a, b );
	ans += a.w*b+b.w*a;
//	ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);
	ans.w = a.w*b.w - dot3F4(a, b);
	return ans;
}

__inline
Quaternion qtNormalize(Quaternion in)
{
	return fastNormalize4(in);
//	in /= length( in );
//	return in;
}
__inline
float4 qtRotate(Quaternion q, float4 vec)
{
	Quaternion qInv = qtInvert( q );
	float4 vcpy = vec;
	vcpy.w = 0.f;
	float4 out = qtMul(qtMul(q,vcpy),qInv);
	return out;
}

__inline
Quaternion qtInvert(Quaternion q)
{
	return (Quaternion)(-q.xyz, q.w);
}

__inline
float4 qtInvRotate(const Quaternion q, float4 vec)
{
	return qtRotate( qtInvert( q ), vec );
}

__inline
float4 transform(const float4* p, const float4* translation, const Quaternion* orientation)
{
	return qtRotate( *orientation, *p ) + (*translation);
}



__inline
float4 normalize3(const float4 a)
{
	float4 n = make_float4(a.x, a.y, a.z, 0.f);
	return fastNormalize4( n );
}

inline void projectLocal(const ConvexPolyhedronCL* hull,  const float4 pos, const float4 orn, 
const float4* dir, const float4* vertices, float* min, float* max)
{
	min[0] = FLT_MAX;
	max[0] = -FLT_MAX;
	int numVerts = hull->m_numVertices;

	const float4 localDir = qtInvRotate(orn,*dir);
	float offset = dot(pos,*dir);
	for(int i=0;i<numVerts;i++)
	{
		float dp = dot(vertices[hull->m_vertexOffset+i],localDir);
		if(dp < min[0])	
			min[0] = dp;
		if(dp > max[0])	
			max[0] = dp;
	}
	if(min[0]>max[0])
	{
		float tmp = min[0];
		min[0] = max[0];
		max[0] = tmp;
	}
	min[0] += offset;
	max[0] += offset;
}

inline void project(__global const ConvexPolyhedronCL* hull,  const float4 pos, const float4 orn, 
const float4* dir, __global const float4* vertices, float* min, float* max)
{
	min[0] = FLT_MAX;
	max[0] = -FLT_MAX;
	int numVerts = hull->m_numVertices;

	const float4 localDir = qtInvRotate(orn,*dir);
	float offset = dot(pos,*dir);
	for(int i=0;i<numVerts;i++)
	{
		float dp = dot(vertices[hull->m_vertexOffset+i],localDir);
		if(dp < min[0])	
			min[0] = dp;
		if(dp > max[0])	
			max[0] = dp;
	}
	if(min[0]>max[0])
	{
		float tmp = min[0];
		min[0] = max[0];
		max[0] = tmp;
	}
	min[0] += offset;
	max[0] += offset;
}

inline bool TestSepAxisLocalA(const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, 
	const float4 posA,const float4 ornA,
	const float4 posB,const float4 ornB,
	float4* sep_axis, const float4* verticesA, __global const float4* verticesB,float* depth)
{
	float Min0,Max0;
	float Min1,Max1;
	projectLocal(hullA,posA,ornA,sep_axis,verticesA, &Min0, &Max0);
	project(hullB,posB,ornB, sep_axis,verticesB, &Min1, &Max1);

	if(Max0<Min1 || Max1<Min0)
		return false;

	float d0 = Max0 - Min1;
	float d1 = Max1 - Min0;
	*depth = d0<d1 ? d0:d1;
	return true;
}




inline bool IsAlmostZero(const float4 v)
{
	if(fabs(v.x)>1e-6f || fabs(v.y)>1e-6f || fabs(v.z)>1e-6f)
		return false;
	return true;
}



bool findSeparatingAxisLocalA(	const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, 
	const float4 posA1,
	const float4 ornA,
	const float4 posB1,
	const float4 ornB,
	const float4 DeltaC2,
	
	const float4* verticesA, 
	const float4* uniqueEdgesA, 
	const btGpuFace* facesA,
	const int*  indicesA,

	__global const float4* verticesB, 
	__global const float4* uniqueEdgesB, 
	__global const btGpuFace* facesB,
	__global const int*  indicesB,
	float4* sep,
	float* dmin)
{
	

	float4 posA = posA1;
	posA.w = 0.f;
	float4 posB = posB1;
	posB.w = 0.f;
	int curPlaneTests=0;
	{
		int numFacesA = hullA->m_numFaces;
		// Test normals from hullA
		for(int i=0;i<numFacesA;i++)
		{
			const float4 normal = facesA[hullA->m_faceOffset+i].m_plane;
			float4 faceANormalWS = qtRotate(ornA,normal);
			if (dot3F4(DeltaC2,faceANormalWS)<0)
				faceANormalWS*=-1.f;
			curPlaneTests++;
			float d;
			if(!TestSepAxisLocalA( hullA, hullB, posA,ornA,posB,ornB,&faceANormalWS, verticesA, verticesB,&d))
				return false;
			if(d<*dmin)
			{
				*dmin = d;
				*sep = faceANormalWS;
			}
		}
	}
	if((dot3F4(-DeltaC2,*sep))>0.0f)
	{
		*sep = -(*sep);
	}
	return true;
}

bool findSeparatingAxisLocalB(	__global const ConvexPolyhedronCL* hullA,  const ConvexPolyhedronCL* hullB, 
	const float4 posA1,
	const float4 ornA,
	const float4 posB1,
	const float4 ornB,
	const float4 DeltaC2,
	__global const float4* verticesA, 
	__global const float4* uniqueEdgesA, 
	__global const btGpuFace* facesA,
	__global const int*  indicesA,
	const float4* verticesB,
	const float4* uniqueEdgesB, 
	const btGpuFace* facesB,
	const int*  indicesB,
	float4* sep,
	float* dmin)
{


	float4 posA = posA1;
	posA.w = 0.f;
	float4 posB = posB1;
	posB.w = 0.f;
	int curPlaneTests=0;
	{
		int numFacesA = hullA->m_numFaces;
		// Test normals from hullA
		for(int i=0;i<numFacesA;i++)
		{
			const float4 normal = facesA[hullA->m_faceOffset+i].m_plane;
			float4 faceANormalWS = qtRotate(ornA,normal);
			if (dot3F4(DeltaC2,faceANormalWS)<0)
				faceANormalWS *= -1.f;
			curPlaneTests++;
			float d;
			if(!TestSepAxisLocalA( hullB, hullA, posB,ornB,posA,ornA, &faceANormalWS, verticesB,verticesA, &d))
				return false;
			if(d<*dmin)
			{
				*dmin = d;
				*sep = faceANormalWS;
			}
		}
	}
	if((dot3F4(-DeltaC2,*sep))>0.0f)
	{
		*sep = -(*sep);
	}
	return true;
}



bool findSeparatingAxisEdgeEdgeLocalA(	const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, 
	const float4 posA1,
	const float4 ornA,
	const float4 posB1,
	const float4 ornB,
	const float4 DeltaC2,
	const float4* verticesA, 
	const float4* uniqueEdgesA, 
	const btGpuFace* facesA,
	const int*  indicesA,
	__global const float4* verticesB, 
	__global const float4* uniqueEdgesB, 
	__global const btGpuFace* facesB,
	__global const int*  indicesB,
		float4* sep,
	float* dmin)
{


	float4 posA = posA1;
	posA.w = 0.f;
	float4 posB = posB1;
	posB.w = 0.f;

	int curPlaneTests=0;

	int curEdgeEdge = 0;
	// Test edges
	for(int e0=0;e0<hullA->m_numUniqueEdges;e0++)
	{
		const float4 edge0 = uniqueEdgesA[hullA->m_uniqueEdgesOffset+e0];
		float4 edge0World = qtRotate(ornA,edge0);

		for(int e1=0;e1<hullB->m_numUniqueEdges;e1++)
		{
			const float4 edge1 = uniqueEdgesB[hullB->m_uniqueEdgesOffset+e1];
			float4 edge1World = qtRotate(ornB,edge1);


			float4 crossje = cross3(edge0World,edge1World);

			curEdgeEdge++;
			if(!IsAlmostZero(crossje))
			{
				crossje = normalize3(crossje);
				if (dot3F4(DeltaC2,crossje)<0)
					crossje *= -1.f;

				float dist;
				bool result = true;
				{
					float Min0,Max0;
					float Min1,Max1;
					projectLocal(hullA,posA,ornA,&crossje,verticesA, &Min0, &Max0);
					project(hullB,posB,ornB,&crossje,verticesB, &Min1, &Max1);
				
					if(Max0<Min1 || Max1<Min0)
						result = false;
				
					float d0 = Max0 - Min1;
					float d1 = Max1 - Min0;
					dist = d0<d1 ? d0:d1;
					result = true;

				}
				

				if(dist<*dmin)
				{
					*dmin = dist;
					*sep = crossje;
				}
			}
		}

	}

	
	if((dot3F4(-DeltaC2,*sep))>0.0f)
	{
		*sep = -(*sep);
	}
	return true;
}



inline int	findClippingFaces(const float4 separatingNormal,
                      const ConvexPolyhedronCL* hullA, 
					  __global const ConvexPolyhedronCL* hullB,
                      const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB,
                       __global float4* worldVertsA1,
                      __global float4* worldNormalsA1,
                      __global float4* worldVertsB1,
                      int capacityWorldVerts,
                      const float minDist, float maxDist,
					  const float4* verticesA,
                      const btGpuFace* facesA,
                      const int* indicesA,
					  __global const float4* verticesB,
                      __global const btGpuFace* facesB,
                      __global const int* indicesB,
                      __global int4* clippingFaces, int pairIndex)
{
	int numContactsOut = 0;
	int numWorldVertsB1= 0;
    
    
	int closestFaceB=0;
	float dmax = -FLT_MAX;
    
	{
		for(int face=0;face<hullB->m_numFaces;face++)
		{
			const float4 Normal = make_float4(facesB[hullB->m_faceOffset+face].m_plane.x,
                                              facesB[hullB->m_faceOffset+face].m_plane.y, facesB[hullB->m_faceOffset+face].m_plane.z,0.f);
			const float4 WorldNormal = qtRotate(ornB, Normal);
			float d = dot3F4(WorldNormal,separatingNormal);
			if (d > dmax)
			{
				dmax = d;
				closestFaceB = face;
			}
		}
	}
    
	{
		const btGpuFace polyB = facesB[hullB->m_faceOffset+closestFaceB];
		int numVertices = polyB.m_numIndices;
        if (numVertices>capacityWorldVerts)
            numVertices = capacityWorldVerts;
        if (numVertices<0)
            numVertices = 0;
        
		for(int e0=0;e0<numVertices;e0++)
		{
            if (e0<capacityWorldVerts)
            {
                const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]];
                worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB);
            }
		}
	}
    
    int closestFaceA=0;
	{
		float dmin = FLT_MAX;
		for(int face=0;face<hullA->m_numFaces;face++)
		{
			const float4 Normal = make_float4(
                                              facesA[hullA->m_faceOffset+face].m_plane.x,
                                              facesA[hullA->m_faceOffset+face].m_plane.y,
                                              facesA[hullA->m_faceOffset+face].m_plane.z,
                                              0.f);
			const float4 faceANormalWS = qtRotate(ornA,Normal);
            
			float d = dot3F4(faceANormalWS,separatingNormal);
			if (d < dmin)
			{
				dmin = d;
				closestFaceA = face;
                worldNormalsA1[pairIndex] = faceANormalWS;
			}
		}
	}
    
    int numVerticesA = facesA[hullA->m_faceOffset+closestFaceA].m_numIndices;
    if (numVerticesA>capacityWorldVerts)
       numVerticesA = capacityWorldVerts;
    if (numVerticesA<0)
        numVerticesA=0;
    
	for(int e0=0;e0<numVerticesA;e0++)
	{
        if (e0<capacityWorldVerts)
        {
            const float4 a = verticesA[hullA->m_vertexOffset+indicesA[facesA[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]];
            worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA);
        }
    }
    
    clippingFaces[pairIndex].x = closestFaceA;
    clippingFaces[pairIndex].y = closestFaceB;
    clippingFaces[pairIndex].z = numVerticesA;
    clippingFaces[pairIndex].w = numWorldVertsB1;
    
    
	return numContactsOut;
}




// work-in-progress
__kernel void   findConcaveSeparatingAxisVertexFaceKernel( __global int4* concavePairs,
                                                __global const BodyData* rigidBodies,
                                                __global const btCollidableGpu* collidables,
                                                __global const ConvexPolyhedronCL* convexShapes,
                                                __global const float4* vertices,
                                                __global const float4* uniqueEdges,
                                                __global const btGpuFace* faces,
                                                __global const int* indices,
                                                __global const btGpuChildShape* gpuChildShapes,
                                                __global btAabbCL* aabbs,
                                                __global float4* concaveSeparatingNormalsOut,
                                                __global int* concaveHasSeparatingNormals,
                                                __global int4* clippingFacesOut,
                                                __global float4* worldVertsA1GPU,
                                                __global float4*  worldNormalsAGPU,
                                                __global float4* worldVertsB1GPU,
                                                __global float* dmins,
                                                int vertexFaceCapacity,
                                                int numConcavePairs
                                                )
{
    
	int i = get_global_id(0);
	if (i>=numConcavePairs)
		return;
    
	concaveHasSeparatingNormals[i] = 0;
    
	int pairIdx = i;
    
	int bodyIndexA = concavePairs[i].x;
	int bodyIndexB = concavePairs[i].y;
    
	int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;
	int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;
    
	int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;
	int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;
    
	if (collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL&&
		collidables[collidableIndexB].m_shapeType!=SHAPE_COMPOUND_OF_CONVEX_HULLS)
	{
		concavePairs[pairIdx].w = -1;
		return;
	}
    
    
    
	int numFacesA = convexShapes[shapeIndexA].m_numFaces;
	int numActualConcaveConvexTests = 0;
	
	int f = concavePairs[i].z;
	
	bool overlap = false;
	
	ConvexPolyhedronCL convexPolyhedronA;
    
	//add 3 vertices of the triangle
	convexPolyhedronA.m_numVertices = 3;
	convexPolyhedronA.m_vertexOffset = 0;
	float4	localCenter = make_float4(0.f,0.f,0.f,0.f);
    
	btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f];
	float4 triMinAabb, triMaxAabb;
	btAabbCL triAabb;
	triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f);
	triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f);
	
	float4 verticesA[3];
	for (int i=0;i<3;i++)
	{
		int index = indices[face.m_indexOffset+i];
		float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];
		verticesA[i] = vert;
		localCenter += vert;
        
		triAabb.m_min = min(triAabb.m_min,vert);
		triAabb.m_max = max(triAabb.m_max,vert);
        
	}
    
	overlap = true;
	overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap;
	overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap;
	overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap;
    
	if (overlap)
	{
		float dmin = FLT_MAX;
		int hasSeparatingAxis=5;
		float4 sepAxis=make_float4(1,2,3,4);
        
		int localCC=0;
		numActualConcaveConvexTests++;
        
		//a triangle has 3 unique edges
		convexPolyhedronA.m_numUniqueEdges = 3;
		convexPolyhedronA.m_uniqueEdgesOffset = 0;
		float4 uniqueEdgesA[3];
		
		uniqueEdgesA[0] = (verticesA[1]-verticesA[0]);
		uniqueEdgesA[1] = (verticesA[2]-verticesA[1]);
		uniqueEdgesA[2] = (verticesA[0]-verticesA[2]);
        
        
		convexPolyhedronA.m_faceOffset = 0;
        
		float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f);
        
		btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES];
		int indicesA[3+3+2+2+2];
		int curUsedIndices=0;
		int fidx=0;
        
		//front size of triangle
		{
			facesA[fidx].m_indexOffset=curUsedIndices;
			indicesA[0] = 0;
			indicesA[1] = 1;
			indicesA[2] = 2;
			curUsedIndices+=3;
			float c = face.m_plane.w;
			facesA[fidx].m_plane.x = normal.x;
			facesA[fidx].m_plane.y = normal.y;
			facesA[fidx].m_plane.z = normal.z;
			facesA[fidx].m_plane.w = c;
			facesA[fidx].m_numIndices=3;
		}
		fidx++;
		//back size of triangle
		{
			facesA[fidx].m_indexOffset=curUsedIndices;
			indicesA[3]=2;
			indicesA[4]=1;
			indicesA[5]=0;
			curUsedIndices+=3;
			float c = dot(normal,verticesA[0]);
			float c1 = -face.m_plane.w;
			facesA[fidx].m_plane.x = -normal.x;
			facesA[fidx].m_plane.y = -normal.y;
			facesA[fidx].m_plane.z = -normal.z;
			facesA[fidx].m_plane.w = c;
			facesA[fidx].m_numIndices=3;
		}
		fidx++;
        
		bool addEdgePlanes = true;
		if (addEdgePlanes)
		{
			int numVertices=3;
			int prevVertex = numVertices-1;
			for (int i=0;i<numVertices;i++)
			{
				float4 v0 = verticesA[i];
				float4 v1 = verticesA[prevVertex];
                
				float4 edgeNormal = normalize(cross(normal,v1-v0));
				float c = -dot(edgeNormal,v0);
                
				facesA[fidx].m_numIndices = 2;
				facesA[fidx].m_indexOffset=curUsedIndices;
				indicesA[curUsedIndices++]=i;
				indicesA[curUsedIndices++]=prevVertex;
                
				facesA[fidx].m_plane.x = edgeNormal.x;
				facesA[fidx].m_plane.y = edgeNormal.y;
				facesA[fidx].m_plane.z = edgeNormal.z;
				facesA[fidx].m_plane.w = c;
				fidx++;
				prevVertex = i;
			}
		}
		convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES;
		convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f);
        
        
		float4 posA = rigidBodies[bodyIndexA].m_pos;
		posA.w = 0.f;
		float4 posB = rigidBodies[bodyIndexB].m_pos;
		posB.w = 0.f;
        
		float4 ornA = rigidBodies[bodyIndexA].m_quat;
		float4 ornB =rigidBodies[bodyIndexB].m_quat;
        
		
        
        
		///////////////////
		///compound shape support
        
		if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)
		{
			int compoundChild = concavePairs[pairIdx].w;
			int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild;
			int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;
			float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;
			float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;
			float4 newPosB = transform(&childPosB,&posB,&ornB);
			float4 newOrnB = qtMul(ornB,childOrnB);
			posB = newPosB;
			ornB = newOrnB;
			shapeIndexB = collidables[childColIndexB].m_shapeIndex;
		}
		//////////////////
        
		float4 c0local = convexPolyhedronA.m_localCenter;
		float4 c0 = transform(&c0local, &posA, &ornA);
		float4 c1local = convexShapes[shapeIndexB].m_localCenter;
		float4 c1 = transform(&c1local,&posB,&ornB);
		const float4 DeltaC2 = c0 - c1;
        
        
		bool sepA = findSeparatingAxisLocalA(	&convexPolyhedronA, &convexShapes[shapeIndexB],
                                             posA,ornA,
                                             posB,ornB,
                                             DeltaC2,
                                             verticesA,uniqueEdgesA,facesA,indicesA,
                                             vertices,uniqueEdges,faces,indices,
                                             &sepAxis,&dmin);
		hasSeparatingAxis = 4;
		if (!sepA)
		{
			hasSeparatingAxis = 0;
		} else
		{
			bool sepB = findSeparatingAxisLocalB(	&convexShapes[shapeIndexB],&convexPolyhedronA,
                                                 posB,ornB,
                                                 posA,ornA,
                                                 DeltaC2,
                                                 vertices,uniqueEdges,faces,indices,
                                                 verticesA,uniqueEdgesA,facesA,indicesA,
                                                 &sepAxis,&dmin);
            
			if (!sepB)
			{
				hasSeparatingAxis = 0;
			} else
			{
				hasSeparatingAxis = 1;
			}
		}	
		
		if (hasSeparatingAxis)
		{
            dmins[i] = dmin;
			concaveSeparatingNormalsOut[pairIdx]=sepAxis;
			concaveHasSeparatingNormals[i]=1;
            
		} else
		{	
			//mark this pair as in-active
			concavePairs[pairIdx].w = -1;
		}
	}
	else
	{	
		//mark this pair as in-active
		concavePairs[pairIdx].w = -1;
	}
}




// work-in-progress
__kernel void   findConcaveSeparatingAxisEdgeEdgeKernel( __global int4* concavePairs,
                                                          __global const BodyData* rigidBodies,
                                                          __global const btCollidableGpu* collidables,
                                                          __global const ConvexPolyhedronCL* convexShapes,
                                                          __global const float4* vertices,
                                                          __global const float4* uniqueEdges,
                                                          __global const btGpuFace* faces,
                                                          __global const int* indices,
                                                          __global const btGpuChildShape* gpuChildShapes,
                                                          __global btAabbCL* aabbs,
                                                          __global float4* concaveSeparatingNormalsOut,
                                                          __global int* concaveHasSeparatingNormals,
                                                          __global int4* clippingFacesOut,
                                                          __global float4* worldVertsA1GPU,
                                                          __global float4*  worldNormalsAGPU,
                                                          __global float4* worldVertsB1GPU,
                                                          __global float* dmins,
                                                          int vertexFaceCapacity,
                                                          int numConcavePairs
                                                          )
{
    
	int i = get_global_id(0);
	if (i>=numConcavePairs)
		return;
    
	if (!concaveHasSeparatingNormals[i])
        return;
    
	int pairIdx = i;
    
	int bodyIndexA = concavePairs[i].x;
	int bodyIndexB = concavePairs[i].y;
    
	int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;
	int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;
    
	int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;
	int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;
    
    
	int numFacesA = convexShapes[shapeIndexA].m_numFaces;
	int numActualConcaveConvexTests = 0;
	
	int f = concavePairs[i].z;
	
	bool overlap = false;
	
	ConvexPolyhedronCL convexPolyhedronA;
    
	//add 3 vertices of the triangle
	convexPolyhedronA.m_numVertices = 3;
	convexPolyhedronA.m_vertexOffset = 0;
	float4	localCenter = make_float4(0.f,0.f,0.f,0.f);
    
	btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f];
	float4 triMinAabb, triMaxAabb;
	btAabbCL triAabb;
	triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f);
	triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f);
	
	float4 verticesA[3];
	for (int i=0;i<3;i++)
	{
		int index = indices[face.m_indexOffset+i];
		float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];
		verticesA[i] = vert;
		localCenter += vert;
        
		triAabb.m_min = min(triAabb.m_min,vert);
		triAabb.m_max = max(triAabb.m_max,vert);
        
	}
    
	overlap = true;
	overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap;
	overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap;
	overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap;
    
	if (overlap)
	{
		float dmin = dmins[i];
		int hasSeparatingAxis=5;
		float4 sepAxis=make_float4(1,2,3,4);
        sepAxis = concaveSeparatingNormalsOut[pairIdx];
        
		int localCC=0;
		numActualConcaveConvexTests++;
        
		//a triangle has 3 unique edges
		convexPolyhedronA.m_numUniqueEdges = 3;
		convexPolyhedronA.m_uniqueEdgesOffset = 0;
		float4 uniqueEdgesA[3];
		
		uniqueEdgesA[0] = (verticesA[1]-verticesA[0]);
		uniqueEdgesA[1] = (verticesA[2]-verticesA[1]);
		uniqueEdgesA[2] = (verticesA[0]-verticesA[2]);
        
        
		convexPolyhedronA.m_faceOffset = 0;
        
		float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f);
        
		btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES];
		int indicesA[3+3+2+2+2];
		int curUsedIndices=0;
		int fidx=0;
        
		//front size of triangle
		{
			facesA[fidx].m_indexOffset=curUsedIndices;
			indicesA[0] = 0;
			indicesA[1] = 1;
			indicesA[2] = 2;
			curUsedIndices+=3;
			float c = face.m_plane.w;
			facesA[fidx].m_plane.x = normal.x;
			facesA[fidx].m_plane.y = normal.y;
			facesA[fidx].m_plane.z = normal.z;
			facesA[fidx].m_plane.w = c;
			facesA[fidx].m_numIndices=3;
		}
		fidx++;
		//back size of triangle
		{
			facesA[fidx].m_indexOffset=curUsedIndices;
			indicesA[3]=2;
			indicesA[4]=1;
			indicesA[5]=0;
			curUsedIndices+=3;
			float c = dot(normal,verticesA[0]);
			float c1 = -face.m_plane.w;
			facesA[fidx].m_plane.x = -normal.x;
			facesA[fidx].m_plane.y = -normal.y;
			facesA[fidx].m_plane.z = -normal.z;
			facesA[fidx].m_plane.w = c;
			facesA[fidx].m_numIndices=3;
		}
		fidx++;
        
		bool addEdgePlanes = true;
		if (addEdgePlanes)
		{
			int numVertices=3;
			int prevVertex = numVertices-1;
			for (int i=0;i<numVertices;i++)
			{
				float4 v0 = verticesA[i];
				float4 v1 = verticesA[prevVertex];
                
				float4 edgeNormal = normalize(cross(normal,v1-v0));
				float c = -dot(edgeNormal,v0);
                
				facesA[fidx].m_numIndices = 2;
				facesA[fidx].m_indexOffset=curUsedIndices;
				indicesA[curUsedIndices++]=i;
				indicesA[curUsedIndices++]=prevVertex;
                
				facesA[fidx].m_plane.x = edgeNormal.x;
				facesA[fidx].m_plane.y = edgeNormal.y;
				facesA[fidx].m_plane.z = edgeNormal.z;
				facesA[fidx].m_plane.w = c;
				fidx++;
				prevVertex = i;
			}
		}
		convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES;
		convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f);
        
        
		float4 posA = rigidBodies[bodyIndexA].m_pos;
		posA.w = 0.f;
		float4 posB = rigidBodies[bodyIndexB].m_pos;
		posB.w = 0.f;
        
		float4 ornA = rigidBodies[bodyIndexA].m_quat;
		float4 ornB =rigidBodies[bodyIndexB].m_quat;
        
		
        
        
		///////////////////
		///compound shape support
        
		if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)
		{
			int compoundChild = concavePairs[pairIdx].w;
			int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild;
			int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;
			float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;
			float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;
			float4 newPosB = transform(&childPosB,&posB,&ornB);
			float4 newOrnB = qtMul(ornB,childOrnB);
			posB = newPosB;
			ornB = newOrnB;
			shapeIndexB = collidables[childColIndexB].m_shapeIndex;
		}
		//////////////////
        
		float4 c0local = convexPolyhedronA.m_localCenter;
		float4 c0 = transform(&c0local, &posA, &ornA);
		float4 c1local = convexShapes[shapeIndexB].m_localCenter;
		float4 c1 = transform(&c1local,&posB,&ornB);
		const float4 DeltaC2 = c0 - c1;
        
        
		{
			bool sepEE = findSeparatingAxisEdgeEdgeLocalA(	&convexPolyhedronA, &convexShapes[shapeIndexB],
                                                              posA,ornA,
                                                              posB,ornB,
                                                              DeltaC2,
                                                              verticesA,uniqueEdgesA,facesA,indicesA,
                                                              vertices,uniqueEdges,faces,indices,
                                                              &sepAxis,&dmin);
                
			if (!sepEE)
			{
				hasSeparatingAxis = 0;
			} else
			{
				hasSeparatingAxis = 1;
			}
		}
		
		
		if (hasSeparatingAxis)
		{
			sepAxis.w = dmin;
            dmins[i] = dmin;
			concaveSeparatingNormalsOut[pairIdx]=sepAxis;
			concaveHasSeparatingNormals[i]=1;
           
 	float minDist = -1e30f;
			float maxDist = 0.02f;

            
            findClippingFaces(sepAxis,
                              &convexPolyhedronA,
                              &convexShapes[shapeIndexB],
                              posA,ornA,
                              posB,ornB,
                              worldVertsA1GPU,
                              worldNormalsAGPU,
                              worldVertsB1GPU,
                              vertexFaceCapacity,
                              minDist, maxDist,
                              verticesA,
                              facesA,
                              indicesA,
                              vertices,
                              faces,
                              indices,
                              clippingFacesOut, pairIdx);
	           
            
		} else
		{	
			//mark this pair as in-active
			concavePairs[pairIdx].w = -1;
		}
	}
	else
	{	
		//mark this pair as in-active
		concavePairs[pairIdx].w = -1;
	}
	
	concavePairs[i].z = -1;//for the next stage, z is used to determine existing contact points
}