1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
|
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Elsevier CDROM license agreements grants nonexclusive license to use the software
for any purpose, commercial or non-commercial as long as the following credit is included
identifying the original source of the software:
Parts of the source are "from the book Real-Time Collision Detection by
Christer Ericson, published by Morgan Kaufmann Publishers,
(c) 2005 Elsevier Inc."
*/
#include "b3VoronoiSimplexSolver.h"
#define VERTA 0
#define VERTB 1
#define VERTC 2
#define VERTD 3
#define B3_CATCH_DEGENERATE_TETRAHEDRON 1
void b3VoronoiSimplexSolver::removeVertex(int index)
{
b3Assert(m_numVertices>0);
m_numVertices--;
m_simplexVectorW[index] = m_simplexVectorW[m_numVertices];
m_simplexPointsP[index] = m_simplexPointsP[m_numVertices];
m_simplexPointsQ[index] = m_simplexPointsQ[m_numVertices];
}
void b3VoronoiSimplexSolver::reduceVertices (const b3UsageBitfield& usedVerts)
{
if ((numVertices() >= 4) && (!usedVerts.usedVertexD))
removeVertex(3);
if ((numVertices() >= 3) && (!usedVerts.usedVertexC))
removeVertex(2);
if ((numVertices() >= 2) && (!usedVerts.usedVertexB))
removeVertex(1);
if ((numVertices() >= 1) && (!usedVerts.usedVertexA))
removeVertex(0);
}
//clear the simplex, remove all the vertices
void b3VoronoiSimplexSolver::reset()
{
m_cachedValidClosest = false;
m_numVertices = 0;
m_needsUpdate = true;
m_lastW = b3MakeVector3(b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT));
m_cachedBC.reset();
}
//add a vertex
void b3VoronoiSimplexSolver::addVertex(const b3Vector3& w, const b3Vector3& p, const b3Vector3& q)
{
m_lastW = w;
m_needsUpdate = true;
m_simplexVectorW[m_numVertices] = w;
m_simplexPointsP[m_numVertices] = p;
m_simplexPointsQ[m_numVertices] = q;
m_numVertices++;
}
bool b3VoronoiSimplexSolver::updateClosestVectorAndPoints()
{
if (m_needsUpdate)
{
m_cachedBC.reset();
m_needsUpdate = false;
switch (numVertices())
{
case 0:
m_cachedValidClosest = false;
break;
case 1:
{
m_cachedP1 = m_simplexPointsP[0];
m_cachedP2 = m_simplexPointsQ[0];
m_cachedV = m_cachedP1-m_cachedP2; //== m_simplexVectorW[0]
m_cachedBC.reset();
m_cachedBC.setBarycentricCoordinates(b3Scalar(1.),b3Scalar(0.),b3Scalar(0.),b3Scalar(0.));
m_cachedValidClosest = m_cachedBC.isValid();
break;
};
case 2:
{
//closest point origin from line segment
const b3Vector3& from = m_simplexVectorW[0];
const b3Vector3& to = m_simplexVectorW[1];
b3Vector3 nearest;
b3Vector3 p =b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.));
b3Vector3 diff = p - from;
b3Vector3 v = to - from;
b3Scalar t = v.dot(diff);
if (t > 0) {
b3Scalar dotVV = v.dot(v);
if (t < dotVV) {
t /= dotVV;
diff -= t*v;
m_cachedBC.m_usedVertices.usedVertexA = true;
m_cachedBC.m_usedVertices.usedVertexB = true;
} else {
t = 1;
diff -= v;
//reduce to 1 point
m_cachedBC.m_usedVertices.usedVertexB = true;
}
} else
{
t = 0;
//reduce to 1 point
m_cachedBC.m_usedVertices.usedVertexA = true;
}
m_cachedBC.setBarycentricCoordinates(1-t,t);
nearest = from + t*v;
m_cachedP1 = m_simplexPointsP[0] + t * (m_simplexPointsP[1] - m_simplexPointsP[0]);
m_cachedP2 = m_simplexPointsQ[0] + t * (m_simplexPointsQ[1] - m_simplexPointsQ[0]);
m_cachedV = m_cachedP1 - m_cachedP2;
reduceVertices(m_cachedBC.m_usedVertices);
m_cachedValidClosest = m_cachedBC.isValid();
break;
}
case 3:
{
//closest point origin from triangle
b3Vector3 p =b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.));
const b3Vector3& a = m_simplexVectorW[0];
const b3Vector3& b = m_simplexVectorW[1];
const b3Vector3& c = m_simplexVectorW[2];
closestPtPointTriangle(p,a,b,c,m_cachedBC);
m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] +
m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2];
m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] +
m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2];
m_cachedV = m_cachedP1-m_cachedP2;
reduceVertices (m_cachedBC.m_usedVertices);
m_cachedValidClosest = m_cachedBC.isValid();
break;
}
case 4:
{
b3Vector3 p =b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.));
const b3Vector3& a = m_simplexVectorW[0];
const b3Vector3& b = m_simplexVectorW[1];
const b3Vector3& c = m_simplexVectorW[2];
const b3Vector3& d = m_simplexVectorW[3];
bool hasSeperation = closestPtPointTetrahedron(p,a,b,c,d,m_cachedBC);
if (hasSeperation)
{
m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] +
m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2] +
m_simplexPointsP[3] * m_cachedBC.m_barycentricCoords[3];
m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] +
m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2] +
m_simplexPointsQ[3] * m_cachedBC.m_barycentricCoords[3];
m_cachedV = m_cachedP1-m_cachedP2;
reduceVertices (m_cachedBC.m_usedVertices);
} else
{
// printf("sub distance got penetration\n");
if (m_cachedBC.m_degenerate)
{
m_cachedValidClosest = false;
} else
{
m_cachedValidClosest = true;
//degenerate case == false, penetration = true + zero
m_cachedV.setValue(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.));
}
break;
}
m_cachedValidClosest = m_cachedBC.isValid();
//closest point origin from tetrahedron
break;
}
default:
{
m_cachedValidClosest = false;
}
};
}
return m_cachedValidClosest;
}
//return/calculate the closest vertex
bool b3VoronoiSimplexSolver::closest(b3Vector3& v)
{
bool succes = updateClosestVectorAndPoints();
v = m_cachedV;
return succes;
}
b3Scalar b3VoronoiSimplexSolver::maxVertex()
{
int i, numverts = numVertices();
b3Scalar maxV = b3Scalar(0.);
for (i=0;i<numverts;i++)
{
b3Scalar curLen2 = m_simplexVectorW[i].length2();
if (maxV < curLen2)
maxV = curLen2;
}
return maxV;
}
//return the current simplex
int b3VoronoiSimplexSolver::getSimplex(b3Vector3 *pBuf, b3Vector3 *qBuf, b3Vector3 *yBuf) const
{
int i;
for (i=0;i<numVertices();i++)
{
yBuf[i] = m_simplexVectorW[i];
pBuf[i] = m_simplexPointsP[i];
qBuf[i] = m_simplexPointsQ[i];
}
return numVertices();
}
bool b3VoronoiSimplexSolver::inSimplex(const b3Vector3& w)
{
bool found = false;
int i, numverts = numVertices();
//b3Scalar maxV = b3Scalar(0.);
//w is in the current (reduced) simplex
for (i=0;i<numverts;i++)
{
#ifdef BT_USE_EQUAL_VERTEX_THRESHOLD
if ( m_simplexVectorW[i].distance2(w) <= m_equalVertexThreshold)
#else
if (m_simplexVectorW[i] == w)
#endif
found = true;
}
//check in case lastW is already removed
if (w == m_lastW)
return true;
return found;
}
void b3VoronoiSimplexSolver::backup_closest(b3Vector3& v)
{
v = m_cachedV;
}
bool b3VoronoiSimplexSolver::emptySimplex() const
{
return (numVertices() == 0);
}
void b3VoronoiSimplexSolver::compute_points(b3Vector3& p1, b3Vector3& p2)
{
updateClosestVectorAndPoints();
p1 = m_cachedP1;
p2 = m_cachedP2;
}
bool b3VoronoiSimplexSolver::closestPtPointTriangle(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c,b3SubSimplexClosestResult& result)
{
result.m_usedVertices.reset();
// Check if P in vertex region outside A
b3Vector3 ab = b - a;
b3Vector3 ac = c - a;
b3Vector3 ap = p - a;
b3Scalar d1 = ab.dot(ap);
b3Scalar d2 = ac.dot(ap);
if (d1 <= b3Scalar(0.0) && d2 <= b3Scalar(0.0))
{
result.m_closestPointOnSimplex = a;
result.m_usedVertices.usedVertexA = true;
result.setBarycentricCoordinates(1,0,0);
return true;// a; // barycentric coordinates (1,0,0)
}
// Check if P in vertex region outside B
b3Vector3 bp = p - b;
b3Scalar d3 = ab.dot(bp);
b3Scalar d4 = ac.dot(bp);
if (d3 >= b3Scalar(0.0) && d4 <= d3)
{
result.m_closestPointOnSimplex = b;
result.m_usedVertices.usedVertexB = true;
result.setBarycentricCoordinates(0,1,0);
return true; // b; // barycentric coordinates (0,1,0)
}
// Check if P in edge region of AB, if so return projection of P onto AB
b3Scalar vc = d1*d4 - d3*d2;
if (vc <= b3Scalar(0.0) && d1 >= b3Scalar(0.0) && d3 <= b3Scalar(0.0)) {
b3Scalar v = d1 / (d1 - d3);
result.m_closestPointOnSimplex = a + v * ab;
result.m_usedVertices.usedVertexA = true;
result.m_usedVertices.usedVertexB = true;
result.setBarycentricCoordinates(1-v,v,0);
return true;
//return a + v * ab; // barycentric coordinates (1-v,v,0)
}
// Check if P in vertex region outside C
b3Vector3 cp = p - c;
b3Scalar d5 = ab.dot(cp);
b3Scalar d6 = ac.dot(cp);
if (d6 >= b3Scalar(0.0) && d5 <= d6)
{
result.m_closestPointOnSimplex = c;
result.m_usedVertices.usedVertexC = true;
result.setBarycentricCoordinates(0,0,1);
return true;//c; // barycentric coordinates (0,0,1)
}
// Check if P in edge region of AC, if so return projection of P onto AC
b3Scalar vb = d5*d2 - d1*d6;
if (vb <= b3Scalar(0.0) && d2 >= b3Scalar(0.0) && d6 <= b3Scalar(0.0)) {
b3Scalar w = d2 / (d2 - d6);
result.m_closestPointOnSimplex = a + w * ac;
result.m_usedVertices.usedVertexA = true;
result.m_usedVertices.usedVertexC = true;
result.setBarycentricCoordinates(1-w,0,w);
return true;
//return a + w * ac; // barycentric coordinates (1-w,0,w)
}
// Check if P in edge region of BC, if so return projection of P onto BC
b3Scalar va = d3*d6 - d5*d4;
if (va <= b3Scalar(0.0) && (d4 - d3) >= b3Scalar(0.0) && (d5 - d6) >= b3Scalar(0.0)) {
b3Scalar w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
result.m_closestPointOnSimplex = b + w * (c - b);
result.m_usedVertices.usedVertexB = true;
result.m_usedVertices.usedVertexC = true;
result.setBarycentricCoordinates(0,1-w,w);
return true;
// return b + w * (c - b); // barycentric coordinates (0,1-w,w)
}
// P inside face region. Compute Q through its barycentric coordinates (u,v,w)
b3Scalar denom = b3Scalar(1.0) / (va + vb + vc);
b3Scalar v = vb * denom;
b3Scalar w = vc * denom;
result.m_closestPointOnSimplex = a + ab * v + ac * w;
result.m_usedVertices.usedVertexA = true;
result.m_usedVertices.usedVertexB = true;
result.m_usedVertices.usedVertexC = true;
result.setBarycentricCoordinates(1-v-w,v,w);
return true;
// return a + ab * v + ac * w; // = u*a + v*b + w*c, u = va * denom = b3Scalar(1.0) - v - w
}
/// Test if point p and d lie on opposite sides of plane through abc
int b3VoronoiSimplexSolver::pointOutsideOfPlane(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, const b3Vector3& d)
{
b3Vector3 normal = (b-a).cross(c-a);
b3Scalar signp = (p - a).dot(normal); // [AP AB AC]
b3Scalar signd = (d - a).dot( normal); // [AD AB AC]
#ifdef B3_CATCH_DEGENERATE_TETRAHEDRON
#ifdef BT_USE_DOUBLE_PRECISION
if (signd * signd < (b3Scalar(1e-8) * b3Scalar(1e-8)))
{
return -1;
}
#else
if (signd * signd < (b3Scalar(1e-4) * b3Scalar(1e-4)))
{
// printf("affine dependent/degenerate\n");//
return -1;
}
#endif
#endif
// Points on opposite sides if expression signs are opposite
return signp * signd < b3Scalar(0.);
}
bool b3VoronoiSimplexSolver::closestPtPointTetrahedron(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, const b3Vector3& d, b3SubSimplexClosestResult& finalResult)
{
b3SubSimplexClosestResult tempResult;
// Start out assuming point inside all halfspaces, so closest to itself
finalResult.m_closestPointOnSimplex = p;
finalResult.m_usedVertices.reset();
finalResult.m_usedVertices.usedVertexA = true;
finalResult.m_usedVertices.usedVertexB = true;
finalResult.m_usedVertices.usedVertexC = true;
finalResult.m_usedVertices.usedVertexD = true;
int pointOutsideABC = pointOutsideOfPlane(p, a, b, c, d);
int pointOutsideACD = pointOutsideOfPlane(p, a, c, d, b);
int pointOutsideADB = pointOutsideOfPlane(p, a, d, b, c);
int pointOutsideBDC = pointOutsideOfPlane(p, b, d, c, a);
if (pointOutsideABC < 0 || pointOutsideACD < 0 || pointOutsideADB < 0 || pointOutsideBDC < 0)
{
finalResult.m_degenerate = true;
return false;
}
if (!pointOutsideABC && !pointOutsideACD && !pointOutsideADB && !pointOutsideBDC)
{
return false;
}
b3Scalar bestSqDist = FLT_MAX;
// If point outside face abc then compute closest point on abc
if (pointOutsideABC)
{
closestPtPointTriangle(p, a, b, c,tempResult);
b3Vector3 q = tempResult.m_closestPointOnSimplex;
b3Scalar sqDist = (q - p).dot( q - p);
// Update best closest point if (squared) distance is less than current best
if (sqDist < bestSqDist) {
bestSqDist = sqDist;
finalResult.m_closestPointOnSimplex = q;
//convert result bitmask!
finalResult.m_usedVertices.reset();
finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexB;
finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC;
finalResult.setBarycentricCoordinates(
tempResult.m_barycentricCoords[VERTA],
tempResult.m_barycentricCoords[VERTB],
tempResult.m_barycentricCoords[VERTC],
0
);
}
}
// Repeat test for face acd
if (pointOutsideACD)
{
closestPtPointTriangle(p, a, c, d,tempResult);
b3Vector3 q = tempResult.m_closestPointOnSimplex;
//convert result bitmask!
b3Scalar sqDist = (q - p).dot( q - p);
if (sqDist < bestSqDist)
{
bestSqDist = sqDist;
finalResult.m_closestPointOnSimplex = q;
finalResult.m_usedVertices.reset();
finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexB;
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexC;
finalResult.setBarycentricCoordinates(
tempResult.m_barycentricCoords[VERTA],
0,
tempResult.m_barycentricCoords[VERTB],
tempResult.m_barycentricCoords[VERTC]
);
}
}
// Repeat test for face adb
if (pointOutsideADB)
{
closestPtPointTriangle(p, a, d, b,tempResult);
b3Vector3 q = tempResult.m_closestPointOnSimplex;
//convert result bitmask!
b3Scalar sqDist = (q - p).dot( q - p);
if (sqDist < bestSqDist)
{
bestSqDist = sqDist;
finalResult.m_closestPointOnSimplex = q;
finalResult.m_usedVertices.reset();
finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexC;
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB;
finalResult.setBarycentricCoordinates(
tempResult.m_barycentricCoords[VERTA],
tempResult.m_barycentricCoords[VERTC],
0,
tempResult.m_barycentricCoords[VERTB]
);
}
}
// Repeat test for face bdc
if (pointOutsideBDC)
{
closestPtPointTriangle(p, b, d, c,tempResult);
b3Vector3 q = tempResult.m_closestPointOnSimplex;
//convert result bitmask!
b3Scalar sqDist = (q - p).dot( q - p);
if (sqDist < bestSqDist)
{
bestSqDist = sqDist;
finalResult.m_closestPointOnSimplex = q;
finalResult.m_usedVertices.reset();
//
finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexA;
finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC;
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB;
finalResult.setBarycentricCoordinates(
0,
tempResult.m_barycentricCoords[VERTA],
tempResult.m_barycentricCoords[VERTC],
tempResult.m_barycentricCoords[VERTB]
);
}
}
//help! we ended up full !
if (finalResult.m_usedVertices.usedVertexA &&
finalResult.m_usedVertices.usedVertexB &&
finalResult.m_usedVertices.usedVertexC &&
finalResult.m_usedVertices.usedVertexD)
{
return true;
}
return true;
}
|