1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
|
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2008 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the
use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software in a
product, an acknowledgment in the product documentation would be appreciated
but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
/*
GJK-EPA collision solver by Nathanael Presson, 2008
*/
#include "b3GjkEpa.h"
#include "b3SupportMappings.h"
namespace gjkepa2_impl2
{
// Config
/* GJK */
#define GJK_MAX_ITERATIONS 128
#define GJK_ACCURACY ((b3Scalar)0.0001)
#define GJK_MIN_DISTANCE ((b3Scalar)0.0001)
#define GJK_DUPLICATED_EPS ((b3Scalar)0.0001)
#define GJK_SIMPLEX2_EPS ((b3Scalar)0.0)
#define GJK_SIMPLEX3_EPS ((b3Scalar)0.0)
#define GJK_SIMPLEX4_EPS ((b3Scalar)0.0)
/* EPA */
#define EPA_MAX_VERTICES 64
#define EPA_MAX_FACES (EPA_MAX_VERTICES*2)
#define EPA_MAX_ITERATIONS 255
#define EPA_ACCURACY ((b3Scalar)0.0001)
#define EPA_FALLBACK (10*EPA_ACCURACY)
#define EPA_PLANE_EPS ((b3Scalar)0.00001)
#define EPA_INSIDE_EPS ((b3Scalar)0.01)
// Shorthands
// MinkowskiDiff
struct b3MinkowskiDiff
{
const b3ConvexPolyhedronData* m_shapes[2];
b3Matrix3x3 m_toshape1;
b3Transform m_toshape0;
bool m_enableMargin;
void EnableMargin(bool enable)
{
m_enableMargin = enable;
}
inline b3Vector3 Support0(const b3Vector3& d, const b3AlignedObjectArray<b3Vector3>& verticesA) const
{
if (m_enableMargin)
{
return localGetSupportVertexWithMargin(d,m_shapes[0],verticesA,0.f);
} else
{
return localGetSupportVertexWithoutMargin(d,m_shapes[0],verticesA);
}
}
inline b3Vector3 Support1(const b3Vector3& d, const b3AlignedObjectArray<b3Vector3>& verticesB) const
{
if (m_enableMargin)
{
return m_toshape0*(localGetSupportVertexWithMargin(m_toshape1*d,m_shapes[1],verticesB,0.f));
} else
{
return m_toshape0*(localGetSupportVertexWithoutMargin(m_toshape1*d,m_shapes[1],verticesB));
}
}
inline b3Vector3 Support(const b3Vector3& d, const b3AlignedObjectArray<b3Vector3>& verticesA, const b3AlignedObjectArray<b3Vector3>& verticesB) const
{
return(Support0(d,verticesA)-Support1(-d,verticesB));
}
b3Vector3 Support(const b3Vector3& d,unsigned int index,const b3AlignedObjectArray<b3Vector3>& verticesA, const b3AlignedObjectArray<b3Vector3>& verticesB) const
{
if(index)
return(Support1(d,verticesA));
else
return(Support0(d,verticesB));
}
};
typedef b3MinkowskiDiff tShape;
// GJK
struct b3GJK
{
/* Types */
struct sSV
{
b3Vector3 d,w;
};
struct sSimplex
{
sSV* c[4];
b3Scalar p[4];
unsigned int rank;
};
struct eStatus { enum _ {
Valid,
Inside,
Failed };};
/* Fields */
tShape m_shape;
const b3AlignedObjectArray<b3Vector3>& m_verticesA;
const b3AlignedObjectArray<b3Vector3>& m_verticesB;
b3Vector3 m_ray;
b3Scalar m_distance;
sSimplex m_simplices[2];
sSV m_store[4];
sSV* m_free[4];
unsigned int m_nfree;
unsigned int m_current;
sSimplex* m_simplex;
eStatus::_ m_status;
/* Methods */
b3GJK(const b3AlignedObjectArray<b3Vector3>& verticesA,const b3AlignedObjectArray<b3Vector3>& verticesB)
:m_verticesA(verticesA),m_verticesB(verticesB)
{
Initialize();
}
void Initialize()
{
m_ray = b3MakeVector3(0,0,0);
m_nfree = 0;
m_status = eStatus::Failed;
m_current = 0;
m_distance = 0;
}
eStatus::_ Evaluate(const tShape& shapearg,const b3Vector3& guess)
{
unsigned int iterations=0;
b3Scalar sqdist=0;
b3Scalar alpha=0;
b3Vector3 lastw[4];
unsigned int clastw=0;
/* Initialize solver */
m_free[0] = &m_store[0];
m_free[1] = &m_store[1];
m_free[2] = &m_store[2];
m_free[3] = &m_store[3];
m_nfree = 4;
m_current = 0;
m_status = eStatus::Valid;
m_shape = shapearg;
m_distance = 0;
/* Initialize simplex */
m_simplices[0].rank = 0;
m_ray = guess;
const b3Scalar sqrl= m_ray.length2();
appendvertice(m_simplices[0],sqrl>0?-m_ray:b3MakeVector3(1,0,0));
m_simplices[0].p[0] = 1;
m_ray = m_simplices[0].c[0]->w;
sqdist = sqrl;
lastw[0] =
lastw[1] =
lastw[2] =
lastw[3] = m_ray;
/* Loop */
do {
const unsigned int next=1-m_current;
sSimplex& cs=m_simplices[m_current];
sSimplex& ns=m_simplices[next];
/* Check zero */
const b3Scalar rl=m_ray.length();
if(rl<GJK_MIN_DISTANCE)
{/* Touching or inside */
m_status=eStatus::Inside;
break;
}
/* Append new vertice in -'v' direction */
appendvertice(cs,-m_ray);
const b3Vector3& w=cs.c[cs.rank-1]->w;
bool found=false;
for(unsigned int i=0;i<4;++i)
{
if((w-lastw[i]).length2()<GJK_DUPLICATED_EPS)
{ found=true;break; }
}
if(found)
{/* Return old simplex */
removevertice(m_simplices[m_current]);
break;
}
else
{/* Update lastw */
lastw[clastw=(clastw+1)&3]=w;
}
/* Check for termination */
const b3Scalar omega=b3Dot(m_ray,w)/rl;
alpha=b3Max(omega,alpha);
if(((rl-alpha)-(GJK_ACCURACY*rl))<=0)
{/* Return old simplex */
removevertice(m_simplices[m_current]);
break;
}
/* Reduce simplex */
b3Scalar weights[4];
unsigned int mask=0;
switch(cs.rank)
{
case 2: sqdist=projectorigin( cs.c[0]->w,
cs.c[1]->w,
weights,mask);break;
case 3: sqdist=projectorigin( cs.c[0]->w,
cs.c[1]->w,
cs.c[2]->w,
weights,mask);break;
case 4: sqdist=projectorigin( cs.c[0]->w,
cs.c[1]->w,
cs.c[2]->w,
cs.c[3]->w,
weights,mask);break;
}
if(sqdist>=0)
{/* Valid */
ns.rank = 0;
m_ray = b3MakeVector3(0,0,0);
m_current = next;
for(unsigned int i=0,ni=cs.rank;i<ni;++i)
{
if(mask&(1<<i))
{
ns.c[ns.rank] = cs.c[i];
ns.p[ns.rank++] = weights[i];
m_ray += cs.c[i]->w*weights[i];
}
else
{
m_free[m_nfree++] = cs.c[i];
}
}
if(mask==15) m_status=eStatus::Inside;
}
else
{/* Return old simplex */
removevertice(m_simplices[m_current]);
break;
}
m_status=((++iterations)<GJK_MAX_ITERATIONS)?m_status:eStatus::Failed;
} while(m_status==eStatus::Valid);
m_simplex=&m_simplices[m_current];
switch(m_status)
{
case eStatus::Valid: m_distance=m_ray.length();break;
case eStatus::Inside: m_distance=0;break;
default:
{
}
}
return(m_status);
}
bool EncloseOrigin()
{
switch(m_simplex->rank)
{
case 1:
{
for(unsigned int i=0;i<3;++i)
{
b3Vector3 axis=b3MakeVector3(0,0,0);
axis[i]=1;
appendvertice(*m_simplex, axis);
if(EncloseOrigin()) return(true);
removevertice(*m_simplex);
appendvertice(*m_simplex,-axis);
if(EncloseOrigin()) return(true);
removevertice(*m_simplex);
}
}
break;
case 2:
{
const b3Vector3 d=m_simplex->c[1]->w-m_simplex->c[0]->w;
for(unsigned int i=0;i<3;++i)
{
b3Vector3 axis=b3MakeVector3(0,0,0);
axis[i]=1;
const b3Vector3 p=b3Cross(d,axis);
if(p.length2()>0)
{
appendvertice(*m_simplex, p);
if(EncloseOrigin()) return(true);
removevertice(*m_simplex);
appendvertice(*m_simplex,-p);
if(EncloseOrigin()) return(true);
removevertice(*m_simplex);
}
}
}
break;
case 3:
{
const b3Vector3 n=b3Cross(m_simplex->c[1]->w-m_simplex->c[0]->w,
m_simplex->c[2]->w-m_simplex->c[0]->w);
if(n.length2()>0)
{
appendvertice(*m_simplex,n);
if(EncloseOrigin()) return(true);
removevertice(*m_simplex);
appendvertice(*m_simplex,-n);
if(EncloseOrigin()) return(true);
removevertice(*m_simplex);
}
}
break;
case 4:
{
if(b3Fabs(det( m_simplex->c[0]->w-m_simplex->c[3]->w,
m_simplex->c[1]->w-m_simplex->c[3]->w,
m_simplex->c[2]->w-m_simplex->c[3]->w))>0)
return(true);
}
break;
}
return(false);
}
/* Internals */
void getsupport(const b3Vector3& d,sSV& sv) const
{
sv.d = d/d.length();
sv.w = m_shape.Support(sv.d,m_verticesA,m_verticesB);
}
void removevertice(sSimplex& simplex)
{
m_free[m_nfree++]=simplex.c[--simplex.rank];
}
void appendvertice(sSimplex& simplex,const b3Vector3& v)
{
simplex.p[simplex.rank]=0;
simplex.c[simplex.rank]=m_free[--m_nfree];
getsupport(v,*simplex.c[simplex.rank++]);
}
static b3Scalar det(const b3Vector3& a,const b3Vector3& b,const b3Vector3& c)
{
return( a.y*b.z*c.x+a.z*b.x*c.y-
a.x*b.z*c.y-a.y*b.x*c.z+
a.x*b.y*c.z-a.z*b.y*c.x);
}
static b3Scalar projectorigin( const b3Vector3& a,
const b3Vector3& b,
b3Scalar* w,unsigned int& m)
{
const b3Vector3 d=b-a;
const b3Scalar l=d.length2();
if(l>GJK_SIMPLEX2_EPS)
{
const b3Scalar t(l>0?-b3Dot(a,d)/l:0);
if(t>=1) { w[0]=0;w[1]=1;m=2;return(b.length2()); }
else if(t<=0) { w[0]=1;w[1]=0;m=1;return(a.length2()); }
else { w[0]=1-(w[1]=t);m=3;return((a+d*t).length2()); }
}
return(-1);
}
static b3Scalar projectorigin( const b3Vector3& a,
const b3Vector3& b,
const b3Vector3& c,
b3Scalar* w,unsigned int& m)
{
static const unsigned int imd3[]={1,2,0};
const b3Vector3* vt[]={&a,&b,&c};
const b3Vector3 dl[]={a-b,b-c,c-a};
const b3Vector3 n=b3Cross(dl[0],dl[1]);
const b3Scalar l=n.length2();
if(l>GJK_SIMPLEX3_EPS)
{
b3Scalar mindist=-1;
b3Scalar subw[2]={0.f,0.f};
unsigned int subm(0);
for(unsigned int i=0;i<3;++i)
{
if(b3Dot(*vt[i],b3Cross(dl[i],n))>0)
{
const unsigned int j=imd3[i];
const b3Scalar subd(projectorigin(*vt[i],*vt[j],subw,subm));
if((mindist<0)||(subd<mindist))
{
mindist = subd;
m = static_cast<unsigned int>(((subm&1)?1<<i:0)+((subm&2)?1<<j:0));
w[i] = subw[0];
w[j] = subw[1];
w[imd3[j]] = 0;
}
}
}
if(mindist<0)
{
const b3Scalar d=b3Dot(a,n);
const b3Scalar s=b3Sqrt(l);
const b3Vector3 p=n*(d/l);
mindist = p.length2();
m = 7;
w[0] = (b3Cross(dl[1],b-p)).length()/s;
w[1] = (b3Cross(dl[2],c-p)).length()/s;
w[2] = 1-(w[0]+w[1]);
}
return(mindist);
}
return(-1);
}
static b3Scalar projectorigin( const b3Vector3& a,
const b3Vector3& b,
const b3Vector3& c,
const b3Vector3& d,
b3Scalar* w,unsigned int& m)
{
static const unsigned int imd3[]={1,2,0};
const b3Vector3* vt[]={&a,&b,&c,&d};
const b3Vector3 dl[]={a-d,b-d,c-d};
const b3Scalar vl=det(dl[0],dl[1],dl[2]);
const bool ng=(vl*b3Dot(a,b3Cross(b-c,a-b)))<=0;
if(ng&&(b3Fabs(vl)>GJK_SIMPLEX4_EPS))
{
b3Scalar mindist=-1;
b3Scalar subw[3]={0.f,0.f,0.f};
unsigned int subm(0);
for(unsigned int i=0;i<3;++i)
{
const unsigned int j=imd3[i];
const b3Scalar s=vl*b3Dot(d,b3Cross(dl[i],dl[j]));
if(s>0)
{
const b3Scalar subd=projectorigin(*vt[i],*vt[j],d,subw,subm);
if((mindist<0)||(subd<mindist))
{
mindist = subd;
m = static_cast<unsigned int>((subm&1?1<<i:0)+
(subm&2?1<<j:0)+
(subm&4?8:0));
w[i] = subw[0];
w[j] = subw[1];
w[imd3[j]] = 0;
w[3] = subw[2];
}
}
}
if(mindist<0)
{
mindist = 0;
m = 15;
w[0] = det(c,b,d)/vl;
w[1] = det(a,c,d)/vl;
w[2] = det(b,a,d)/vl;
w[3] = 1-(w[0]+w[1]+w[2]);
}
return(mindist);
}
return(-1);
}
};
// EPA
struct b3EPA
{
/* Types */
typedef b3GJK::sSV sSV;
struct sFace
{
b3Vector3 n;
b3Scalar d;
sSV* c[3];
sFace* f[3];
sFace* l[2];
unsigned char e[3];
unsigned char pass;
};
struct sList
{
sFace* root;
unsigned int count;
sList() : root(0),count(0) {}
};
struct sHorizon
{
sFace* cf;
sFace* ff;
unsigned int nf;
sHorizon() : cf(0),ff(0),nf(0) {}
};
struct eStatus { enum _ {
Valid,
Touching,
Degenerated,
NonConvex,
InvalidHull,
OutOfFaces,
OutOfVertices,
AccuraryReached,
FallBack,
Failed };};
/* Fields */
eStatus::_ m_status;
b3GJK::sSimplex m_result;
b3Vector3 m_normal;
b3Scalar m_depth;
sSV m_sv_store[EPA_MAX_VERTICES];
sFace m_fc_store[EPA_MAX_FACES];
unsigned int m_nextsv;
sList m_hull;
sList m_stock;
/* Methods */
b3EPA()
{
Initialize();
}
static inline void bind(sFace* fa,unsigned int ea,sFace* fb,unsigned int eb)
{
fa->e[ea]=(unsigned char)eb;fa->f[ea]=fb;
fb->e[eb]=(unsigned char)ea;fb->f[eb]=fa;
}
static inline void append(sList& list,sFace* face)
{
face->l[0] = 0;
face->l[1] = list.root;
if(list.root) list.root->l[0]=face;
list.root = face;
++list.count;
}
static inline void remove(sList& list,sFace* face)
{
if(face->l[1]) face->l[1]->l[0]=face->l[0];
if(face->l[0]) face->l[0]->l[1]=face->l[1];
if(face==list.root) list.root=face->l[1];
--list.count;
}
void Initialize()
{
m_status = eStatus::Failed;
m_normal = b3MakeVector3(0,0,0);
m_depth = 0;
m_nextsv = 0;
for(unsigned int i=0;i<EPA_MAX_FACES;++i)
{
append(m_stock,&m_fc_store[EPA_MAX_FACES-i-1]);
}
}
eStatus::_ Evaluate(b3GJK& gjk,const b3Vector3& guess)
{
b3GJK::sSimplex& simplex=*gjk.m_simplex;
if((simplex.rank>1)&&gjk.EncloseOrigin())
{
/* Clean up */
while(m_hull.root)
{
sFace* f = m_hull.root;
remove(m_hull,f);
append(m_stock,f);
}
m_status = eStatus::Valid;
m_nextsv = 0;
/* Orient simplex */
if(gjk.det( simplex.c[0]->w-simplex.c[3]->w,
simplex.c[1]->w-simplex.c[3]->w,
simplex.c[2]->w-simplex.c[3]->w)<0)
{
b3Swap(simplex.c[0],simplex.c[1]);
b3Swap(simplex.p[0],simplex.p[1]);
}
/* Build initial hull */
sFace* tetra[]={newface(simplex.c[0],simplex.c[1],simplex.c[2],true),
newface(simplex.c[1],simplex.c[0],simplex.c[3],true),
newface(simplex.c[2],simplex.c[1],simplex.c[3],true),
newface(simplex.c[0],simplex.c[2],simplex.c[3],true)};
if(m_hull.count==4)
{
sFace* best=findbest();
sFace outer=*best;
unsigned int pass=0;
unsigned int iterations=0;
bind(tetra[0],0,tetra[1],0);
bind(tetra[0],1,tetra[2],0);
bind(tetra[0],2,tetra[3],0);
bind(tetra[1],1,tetra[3],2);
bind(tetra[1],2,tetra[2],1);
bind(tetra[2],2,tetra[3],1);
m_status=eStatus::Valid;
for(;iterations<EPA_MAX_ITERATIONS;++iterations)
{
if(m_nextsv<EPA_MAX_VERTICES)
{
sHorizon horizon;
sSV* w=&m_sv_store[m_nextsv++];
bool valid=true;
best->pass = (unsigned char)(++pass);
gjk.getsupport(best->n,*w);
const b3Scalar wdist=b3Dot(best->n,w->w)-best->d;
if(wdist>EPA_ACCURACY)
{
for(unsigned int j=0;(j<3)&&valid;++j)
{
valid&=expand( pass,w,
best->f[j],best->e[j],
horizon);
}
if(valid&&(horizon.nf>=3))
{
bind(horizon.cf,1,horizon.ff,2);
remove(m_hull,best);
append(m_stock,best);
best=findbest();
outer=*best;
} else {
m_status=eStatus::Failed;
//m_status=eStatus::InvalidHull;
break; }
} else { m_status=eStatus::AccuraryReached;break; }
} else { m_status=eStatus::OutOfVertices;break; }
}
const b3Vector3 projection=outer.n*outer.d;
m_normal = outer.n;
m_depth = outer.d;
m_result.rank = 3;
m_result.c[0] = outer.c[0];
m_result.c[1] = outer.c[1];
m_result.c[2] = outer.c[2];
m_result.p[0] = b3Cross( outer.c[1]->w-projection,
outer.c[2]->w-projection).length();
m_result.p[1] = b3Cross( outer.c[2]->w-projection,
outer.c[0]->w-projection).length();
m_result.p[2] = b3Cross( outer.c[0]->w-projection,
outer.c[1]->w-projection).length();
const b3Scalar sum=m_result.p[0]+m_result.p[1]+m_result.p[2];
m_result.p[0] /= sum;
m_result.p[1] /= sum;
m_result.p[2] /= sum;
return(m_status);
}
}
/* Fallback */
m_status = eStatus::FallBack;
m_normal = -guess;
const b3Scalar nl=m_normal.length();
if(nl>0)
m_normal = m_normal/nl;
else
m_normal = b3MakeVector3(1,0,0);
m_depth = 0;
m_result.rank=1;
m_result.c[0]=simplex.c[0];
m_result.p[0]=1;
return(m_status);
}
bool getedgedist(sFace* face, sSV* a, sSV* b, b3Scalar& dist)
{
const b3Vector3 ba = b->w - a->w;
const b3Vector3 n_ab = b3Cross(ba, face->n); // Outward facing edge normal direction, on triangle plane
const b3Scalar a_dot_nab = b3Dot(a->w, n_ab); // Only care about the sign to determine inside/outside, so not normalization required
if(a_dot_nab < 0)
{
// Outside of edge a->b
const b3Scalar ba_l2 = ba.length2();
const b3Scalar a_dot_ba = b3Dot(a->w, ba);
const b3Scalar b_dot_ba = b3Dot(b->w, ba);
if(a_dot_ba > 0)
{
// Pick distance vertex a
dist = a->w.length();
}
else if(b_dot_ba < 0)
{
// Pick distance vertex b
dist = b->w.length();
}
else
{
// Pick distance to edge a->b
const b3Scalar a_dot_b = b3Dot(a->w, b->w);
dist = b3Sqrt(b3Max((a->w.length2() * b->w.length2() - a_dot_b * a_dot_b) / ba_l2, (b3Scalar)0));
}
return true;
}
return false;
}
sFace* newface(sSV* a,sSV* b,sSV* c,bool forced)
{
if(m_stock.root)
{
sFace* face=m_stock.root;
remove(m_stock,face);
append(m_hull,face);
face->pass = 0;
face->c[0] = a;
face->c[1] = b;
face->c[2] = c;
face->n = b3Cross(b->w-a->w,c->w-a->w);
const b3Scalar l=face->n.length();
const bool v=l>EPA_ACCURACY;
if(v)
{
if(!(getedgedist(face, a, b, face->d) ||
getedgedist(face, b, c, face->d) ||
getedgedist(face, c, a, face->d)))
{
// Origin projects to the interior of the triangle
// Use distance to triangle plane
face->d = b3Dot(a->w, face->n) / l;
}
face->n /= l;
if(forced || (face->d >= -EPA_PLANE_EPS))
{
return face;
}
else
m_status=eStatus::NonConvex;
}
else
m_status=eStatus::Degenerated;
remove(m_hull, face);
append(m_stock, face);
return 0;
}
m_status = m_stock.root ? eStatus::OutOfVertices : eStatus::OutOfFaces;
return 0;
}
sFace* findbest()
{
sFace* minf=m_hull.root;
b3Scalar mind=minf->d*minf->d;
for(sFace* f=minf->l[1];f;f=f->l[1])
{
const b3Scalar sqd=f->d*f->d;
if(sqd<mind)
{
minf=f;
mind=sqd;
}
}
return(minf);
}
bool expand(unsigned int pass,sSV* w,sFace* f,unsigned int e,sHorizon& horizon)
{
static const unsigned int i1m3[]={1,2,0};
static const unsigned int i2m3[]={2,0,1};
if(f->pass!=pass)
{
const unsigned int e1=i1m3[e];
if((b3Dot(f->n,w->w)-f->d)<-EPA_PLANE_EPS)
{
sFace* nf=newface(f->c[e1],f->c[e],w,false);
if(nf)
{
bind(nf,0,f,e);
if(horizon.cf) bind(horizon.cf,1,nf,2); else horizon.ff=nf;
horizon.cf=nf;
++horizon.nf;
return(true);
}
}
else
{
const unsigned int e2=i2m3[e];
f->pass = (unsigned char)pass;
if( expand(pass,w,f->f[e1],f->e[e1],horizon)&&
expand(pass,w,f->f[e2],f->e[e2],horizon))
{
remove(m_hull,f);
append(m_stock,f);
return(true);
}
}
}
return(false);
}
};
//
static void Initialize(const b3Transform& transA, const b3Transform& transB,
const b3ConvexPolyhedronData* hullA, const b3ConvexPolyhedronData* hullB,
const b3AlignedObjectArray<b3Vector3>& verticesA,
const b3AlignedObjectArray<b3Vector3>& verticesB,
b3GjkEpaSolver2::sResults& results,
tShape& shape,
bool withmargins)
{
/* Results */
results.witnesses[0] =
results.witnesses[1] = b3MakeVector3(0,0,0);
results.status = b3GjkEpaSolver2::sResults::Separated;
/* Shape */
shape.m_shapes[0] = hullA;
shape.m_shapes[1] = hullB;
shape.m_toshape1 = transB.getBasis().transposeTimes(transA.getBasis());
shape.m_toshape0 = transA.inverseTimes(transB);
shape.EnableMargin(withmargins);
}
}
//
// Api
//
using namespace gjkepa2_impl2;
//
int b3GjkEpaSolver2::StackSizeRequirement()
{
return(sizeof(b3GJK)+sizeof(b3EPA));
}
//
bool b3GjkEpaSolver2::Distance( const b3Transform& transA, const b3Transform& transB,
const b3ConvexPolyhedronData* hullA, const b3ConvexPolyhedronData* hullB,
const b3AlignedObjectArray<b3Vector3>& verticesA,
const b3AlignedObjectArray<b3Vector3>& verticesB,
const b3Vector3& guess,
sResults& results)
{
tShape shape;
Initialize(transA,transB,hullA,hullB,verticesA,verticesB,results,shape,false);
b3GJK gjk(verticesA,verticesB);
b3GJK::eStatus::_ gjk_status=gjk.Evaluate(shape,guess);
if(gjk_status==b3GJK::eStatus::Valid)
{
b3Vector3 w0=b3MakeVector3(0,0,0);
b3Vector3 w1=b3MakeVector3(0,0,0);
for(unsigned int i=0;i<gjk.m_simplex->rank;++i)
{
const b3Scalar p=gjk.m_simplex->p[i];
w0+=shape.Support( gjk.m_simplex->c[i]->d,0,verticesA,verticesB)*p;
w1+=shape.Support(-gjk.m_simplex->c[i]->d,1,verticesA,verticesB)*p;
}
results.witnesses[0] = transA*w0;
results.witnesses[1] = transA*w1;
results.normal = w0-w1;
results.distance = results.normal.length();
results.normal /= results.distance>GJK_MIN_DISTANCE?results.distance:1;
return(true);
}
else
{
results.status = gjk_status==b3GJK::eStatus::Inside?
sResults::Penetrating :
sResults::GJK_Failed ;
return(false);
}
}
//
bool b3GjkEpaSolver2::Penetration( const b3Transform& transA, const b3Transform& transB,
const b3ConvexPolyhedronData* hullA, const b3ConvexPolyhedronData* hullB,
const b3AlignedObjectArray<b3Vector3>& verticesA,
const b3AlignedObjectArray<b3Vector3>& verticesB,
const b3Vector3& guess,
sResults& results,
bool usemargins)
{
tShape shape;
Initialize(transA,transB,hullA,hullB,verticesA,verticesB,results,shape,usemargins);
b3GJK gjk(verticesA,verticesB);
b3GJK::eStatus::_ gjk_status=gjk.Evaluate(shape,guess);
switch(gjk_status)
{
case b3GJK::eStatus::Inside:
{
b3EPA epa;
b3EPA::eStatus::_ epa_status=epa.Evaluate(gjk,-guess);
if(epa_status!=b3EPA::eStatus::Failed)
{
b3Vector3 w0=b3MakeVector3(0,0,0);
for(unsigned int i=0;i<epa.m_result.rank;++i)
{
w0+=shape.Support(epa.m_result.c[i]->d,0,verticesA,verticesB)*epa.m_result.p[i];
}
results.status = sResults::Penetrating;
results.witnesses[0] = transA*w0;
results.witnesses[1] = transA*(w0-epa.m_normal*epa.m_depth);
results.normal = -epa.m_normal;
results.distance = -epa.m_depth;
return(true);
} else results.status=sResults::EPA_Failed;
}
break;
case b3GJK::eStatus::Failed:
results.status=sResults::GJK_Failed;
break;
default:
{
}
}
return(false);
}
#if 0
//
b3Scalar b3GjkEpaSolver2::SignedDistance(const b3Vector3& position,
b3Scalar margin,
const b3Transform& transA,
const b3ConvexPolyhedronData& hullA,
const b3AlignedObjectArray<b3Vector3>& verticesA,
sResults& results)
{
tShape shape;
btSphereShape shape1(margin);
b3Transform wtrs1(b3Quaternion(0,0,0,1),position);
Initialize(shape0,wtrs0,&shape1,wtrs1,results,shape,false);
GJK gjk;
GJK::eStatus::_ gjk_status=gjk.Evaluate(shape,b3Vector3(1,1,1));
if(gjk_status==GJK::eStatus::Valid)
{
b3Vector3 w0=b3Vector3(0,0,0);
b3Vector3 w1=b3Vector3(0,0,0);
for(unsigned int i=0;i<gjk.m_simplex->rank;++i)
{
const b3Scalar p=gjk.m_simplex->p[i];
w0+=shape.Support( gjk.m_simplex->c[i]->d,0)*p;
w1+=shape.Support(-gjk.m_simplex->c[i]->d,1)*p;
}
results.witnesses[0] = wtrs0*w0;
results.witnesses[1] = wtrs0*w1;
const b3Vector3 delta= results.witnesses[1]-
results.witnesses[0];
const b3Scalar margin= shape0->getMarginNonVirtual()+
shape1.getMarginNonVirtual();
const b3Scalar length= delta.length();
results.normal = delta/length;
results.witnesses[0] += results.normal*margin;
return(length-margin);
}
else
{
if(gjk_status==GJK::eStatus::Inside)
{
if(Penetration(shape0,wtrs0,&shape1,wtrs1,gjk.m_ray,results))
{
const b3Vector3 delta= results.witnesses[0]-
results.witnesses[1];
const b3Scalar length= delta.length();
if (length >= B3_EPSILON)
results.normal = delta/length;
return(-length);
}
}
}
return(B3_INFINITY);
}
//
bool b3GjkEpaSolver2::SignedDistance(const btConvexShape* shape0,
const b3Transform& wtrs0,
const btConvexShape* shape1,
const b3Transform& wtrs1,
const b3Vector3& guess,
sResults& results)
{
if(!Distance(shape0,wtrs0,shape1,wtrs1,guess,results))
return(Penetration(shape0,wtrs0,shape1,wtrs1,guess,results,false));
else
return(true);
}
#endif
/* Symbols cleanup */
#undef GJK_MAX_ITERATIONS
#undef GJK_ACCURACY
#undef GJK_MIN_DISTANCE
#undef GJK_DUPLICATED_EPS
#undef GJK_SIMPLEX2_EPS
#undef GJK_SIMPLEX3_EPS
#undef GJK_SIMPLEX4_EPS
#undef EPA_MAX_VERTICES
#undef EPA_MAX_FACES
#undef EPA_MAX_ITERATIONS
#undef EPA_ACCURACY
#undef EPA_FALLBACK
#undef EPA_PLANE_EPS
#undef EPA_INSIDE_EPS
|